Discrete Orthogonal Transforms on Multisets Associated with Complete Sequences
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 249-257
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a specific version of the authors' approach to the synthesis of bases of discrete orthogonal transforms (DOTs). The approach takes into account the relation between the structure of basis functions of a transform and the existence of a certain numeral system on the (multidimensional) index set of an input signal. In contrast to Chernov's prototype paper “Discrete orthogonal transforms with bases generated by self-similar sequences” (2018), which was concerned with DOTs associated with irredundant numeral systems (where each index of the input signal has a unique representation in a chosen numeral system), in the present paper we study the case of the so-called complete numeral systems. In this case, there is no bijection between the set of input indices of DOTs and the set of their digital representations. Potentially, such statements of applied problems naturally appear in image recognition, artificial intelligence, theory of formal languages, mathematical programming, and other areas where the analyzed objects are characterized by many heterogeneous attributes, which can be quantitative, qualitative, and mixed. There may be several copies of each object, and the copies may have inconsistent descriptions, which must be considered and analyzed as a whole. Such objects with many attributes can be represented as multisets (“sets with repetitions”). Since discrete spectral analysis is a basic tool for solving the described problems in the classical “multiple” interpretation of objects, we try to extend some ideas and methods of spectral analysis to the case of multiset objects.
Keywords: multisets, complete sequences.
Mots-clés : discrete orthogonal transformations
@article{TIMM_2020_26_3_a20,
     author = {V. M. Chernov and M. A. Chicheva},
     title = {Discrete {Orthogonal} {Transforms} on {Multisets} {Associated} with {Complete} {Sequences}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {249--257},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a20/}
}
TY  - JOUR
AU  - V. M. Chernov
AU  - M. A. Chicheva
TI  - Discrete Orthogonal Transforms on Multisets Associated with Complete Sequences
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 249
EP  - 257
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a20/
LA  - ru
ID  - TIMM_2020_26_3_a20
ER  - 
%0 Journal Article
%A V. M. Chernov
%A M. A. Chicheva
%T Discrete Orthogonal Transforms on Multisets Associated with Complete Sequences
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 249-257
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a20/
%G ru
%F TIMM_2020_26_3_a20
V. M. Chernov; M. A. Chicheva. Discrete Orthogonal Transforms on Multisets Associated with Complete Sequences. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 249-257. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a20/

[1] Petrovskii A. B., Prostranstva mnozhestv i multimnozhestv, Editorial URSS, Moskva, 2003, 248 pp.

[2] Petrovskii A. B., Teoriya izmerimykh mnozhestv i multimnozhestv, Nauka, Moskva, 2018, 359 pp.

[3] M. Aigner, Kombinatornaya teoriya, per. s angl., Mir, Moskva, 1982, 558 pp. | MR

[4] Baranov V. I., Stechkin B. S., Ekstremalnye kombinatornye zadachi i ikh prilozheniya, Nauka, Moskva, 1989, 240 pp.

[5] Chernov V. M., “Diskretnye ortogonalnye preobrazovaniya s bazisami, porozhdennymi samopodobnymi posledovatelnostyami”, Kompyuternaya optika, 42:5 (2018), 904–911

[6] Chernov V. M., “Some spectral properties of fractal curves”, Machine Graphics Vision, 5:1/2 (1996), 413–422

[7] Chernov V. M., “Tauber theorems for Dirichlet series and fractals”, Proc. ICPR'96 (Vienna), v. 2, Track B, 1996, 656–661 | DOI

[8] Brown J. L., “Note on complete sequences of integers”, The American Math. Monthly, 68:6 (1961), 557–560 | DOI | MR | Zbl

[9] Pillai S. S., “An arithmetical function concerning primes”, Annamalai University J., 1930, 159–167

[10] The On-Line Encyclopedia of Integer Sequences (OEIS), [e-resource] URL: https://oeis.org/

[11] Feinberg M., “Fibonacci - Tribonacci”, Fibonacci. Quart., 1:30 (1963), 71–74

[12] Noe T. D., “Primes in Fibonacci $n$-step and Lucas $n$-step sequences”, J. Integer Seq., 8 (2005), Article 05.4.4, 12 pp. | MR | Zbl

[13] Moore T. L., “Using Euler's formula to solve plane separation problems”, The College Mathematics J., 22:2 (1991), 125–130 | DOI

[14] Steiner J., “Einige Gesetze uber die Theilung der Ebene und des Raumes (A few statements about the division of the plane and of space)”, J. Reine Angew. Math., 1 (1826), 349–364 | DOI | MR | Zbl