Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 23-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A distance-regular graph $\Gamma$ of diameter 3 is called a Shilla graph if it has the second eigenvalue $\theta_1=a_3$. In this case $a=a_3$ divides $k$ and we set $b=b(\Gamma)=k/a$. Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. There exist graphs with intersection arrays $\{12,10,5;1,1,8\}$ and $\{12,10,3;1,3,8\}$. The nonexistence of graphs with intersection arrays $\{12,10,2;1,2,8\}$, $\{27,20,10;1,2,18\}$, $\{42,30,12;1,6,28\}$, and $\{105,72,24;1,12,70\}$ was proved earlier. In this paper, we study the automorphisms of a distance-regular graph $\Gamma$ with intersection array $\{30,22,9;1,3,20\}$, which is a Shilla graph with $b=3$. Assume that $a$ is a vertex of $\Gamma$, $G={\rm Aut}(\Gamma)$ is a nonsolvable group, $\bar G=G/S(G)$, and $\bar T$ is the socle of $\bar G$. Then $\bar T\cong L_2(7)$, $A_7$, $A_8$, or $U_3(5)$. If $\Gamma$ is arc-transitive, then $T$ is an extension of an irreducible $F_2U_3(5)$-module $V$ by $U_3(5)$ and the dimension of $V$ over $F_3$ is 20, 28, 56, 104, or 288.
Keywords: Shilla graph
Mots-clés : graph automorphism.
@article{TIMM_2020_26_3_a2,
     author = {K. S. Efimov and A. A. Makhnev},
     title = {Automorphisms of a {Distance-Regular} {Graph} with {Intersection} {Array} $\{30,22,9;1,3,20\}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {23--31},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a2/}
}
TY  - JOUR
AU  - K. S. Efimov
AU  - A. A. Makhnev
TI  - Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 23
EP  - 31
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a2/
LA  - ru
ID  - TIMM_2020_26_3_a2
ER  - 
%0 Journal Article
%A K. S. Efimov
%A A. A. Makhnev
%T Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 23-31
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a2/
%G ru
%F TIMM_2020_26_3_a2
K. S. Efimov; A. A. Makhnev. Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 23-31. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a2/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl

[2] Koolen J.H., Park J., “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[3] Brouwer A. E., Sumaloj S., Worawannotai C., “The nonexistence of distance-regular graphs with intersection arrays {27,20,10;1,2,18} and {36,28,4;1,2,24}”, Australasian J. Comb., 66:2 (2016), 330–332 | MR | Zbl

[4] Belousov I.N., Makhnev A.A., “Distantsionno regulyarnye grafy s massivami peresechenii {42,30,12;1,6,28} i {60,45,8;1,12,50} ne suschestvuyut”, Sib. elektron. matem. izv., 15 (2018), 1506–1512 | MR | Zbl

[5] Belousov I.N., Makhnev A.A., “Distantsionno regulyarnyi graf s massivom peresechenii {105,72,24;1,12,70} ne suschestvuet”, Sib. elektron. mat. izv., 16 (2019), 206–216 | MR | Zbl

[6] Cameron P. J., Permutation groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl

[7] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl

[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl