Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 211-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Wielandt's criterion for the subnormality of a subgroup of a finite group is developed. For a set $\pi=\{p_1,p_2,\ldots,p_n\}$ and a partition $\sigma=\{\{p_1\},\{p_2\},\ldots,\{p_n\},\{\pi\}'\}$, it is proved that a subgroup $H$ is $\sigma$-subnormal in a finite group $G$ if and only if it is $\{\{p_i\},\{p_i\}'\}$-subnormal in $G$ for every $i=1,2,\ldots,n$. In particular, $H$ is subnormal in $G$ if and only if it is $\{\{p\},\{p\}'\}$-subnormal in $\langle H,H^x\rangle$ for every prime $p$ and any element $x\in G$.
Keywords: finite group, subnormal subgroup, $\sigma$-subnormal subgroup, elementary binary partition.
@article{TIMM_2020_26_3_a17,
     author = {F. Sun and X. Yi and S. F. Kamornikov},
     title = {Criterion of {Subnormality} in a {Finite} {Group:} {Reduction} to {Elementary} {Binary} {Partitions}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {211--218},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a17/}
}
TY  - JOUR
AU  - F. Sun
AU  - X. Yi
AU  - S. F. Kamornikov
TI  - Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 211
EP  - 218
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a17/
LA  - ru
ID  - TIMM_2020_26_3_a17
ER  - 
%0 Journal Article
%A F. Sun
%A X. Yi
%A S. F. Kamornikov
%T Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 211-218
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a17/
%G ru
%F TIMM_2020_26_3_a17
F. Sun; X. Yi; S. F. Kamornikov. Criterion of Subnormality in a Finite Group: Reduction to Elementary Binary Partitions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 211-218. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a17/

[1] Wielandt H., “Criterion of subnormality in finite groups”, Math. Z., 138 (1974), 199–203 | DOI | MR | Zbl

[2] Skiba A.N., “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[3] Kleidman P.B., “A proof of the Kegel-Wielandt conjecture on subnormal subgroups”, Ann. Math., 133:2 (1991), 369–428 | DOI | MR | Zbl

[4] Kegel O.H., “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78:1 (1962), 205–221 | DOI | MR | Zbl

[5] Wielandt H., “Zusammengesetzte Gruppen: Holders Programm heute”, Proc. Sympos. Pure Math., 37 (1980), 161–173 | DOI | MR | Zbl

[6] Kamornikov S.F., “Permutability of subgroups and $\mathfrak{F}$-subnormality”, Sib. Math. J., 37:5 (1996), 936–949 | DOI | MR | Zbl

[7] Lennox J.C., Stonehewer S.E., Subnormal subgroups of groups, Clarendon Press, Oxford, 1987, 270 pp. | MR | Zbl

[8] Ballester-Bolinches A., Ezquerro L.M., Classes of finite groups, Springer, N Y, 2006, 385 pp. | DOI | MR | Zbl

[9] Kamornikov S.F., Selkin M.V., Podgruppovye funktory i klassy konechnykh grupp, Belorusskaya nauka, Minsk, 2003, 256 pp.

[10] Wielandt H., “Uber den Normalisator der subnormalen Untergruppen”, Math. Z., 69:8 (1958), 463–465 | DOI | MR | Zbl

[11] Baer R., “Engelsche Elemente Noetherscher Gruppen”, Ann. Math., 133:3 (1957), 256–270 | DOI | MR | Zbl

[12] Guest S., Levy D., “Criteria for solvable radical membership via p-elements”, J. Algebra, 415 (2014), 88–111 | DOI | MR | Zbl