@article{TIMM_2020_26_3_a16,
author = {F. S. Stonyakin and I. V. Baran},
title = {On some algorithms for constrained optimization problems with relative accuracy with respect to the objective functional},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {198--210},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a16/}
}
TY - JOUR AU - F. S. Stonyakin AU - I. V. Baran TI - On some algorithms for constrained optimization problems with relative accuracy with respect to the objective functional JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 198 EP - 210 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a16/ LA - ru ID - TIMM_2020_26_3_a16 ER -
%0 Journal Article %A F. S. Stonyakin %A I. V. Baran %T On some algorithms for constrained optimization problems with relative accuracy with respect to the objective functional %J Trudy Instituta matematiki i mehaniki %D 2020 %P 198-210 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a16/ %G ru %F TIMM_2020_26_3_a16
F. S. Stonyakin; I. V. Baran. On some algorithms for constrained optimization problems with relative accuracy with respect to the objective functional. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 198-210. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a16/
[1] Nesterov Yu., “Rounding of convex sets and efficient gradient methods for linear programming problems”, Optimization Methods and Software, 23:1 (2008), 109–128 | MR | Zbl
[2] Nesterov Yu., “Unconstrained convex minimization in relative scale”, Math. Oper. Res., 34:1 (2009), 180–193 | DOI | MR | Zbl
[3] Nesterov Yu. E., Algoritmicheskaya vypuklaya optimizatsiya, dis. ...d-ra fiz.-mat. nauk, Mosk. fiz.-tekhn. in-t, 2013, 367 pp.
[4] Nemirovskii A. S., Yudin D. B., Slozhnost zadach i effektivnost metodov optimizatsii, Nauka, Moskva, 1979, 384 pp.
[5] Polyak B. T., “Odin obschii metod resheniya ekstremalnykh zadach”, Dokl. AN SSSR, 174:1 (1967), 33–36 | Zbl
[6] Shor N. Z., “Primenenie obobschennogo gradientnogo spuska v blochnom programmirovanii”, Kibernetika, 1967, no. 3, 53–55 | Zbl
[7] Nemirovskii A. S., Yudin D. B., “Effektivnye metody resheniya zadach vypuklogo programmirovaniya bolshoi razmernosti”, Ekonomika i mat. metody, 1979, no. 2, 135–152
[8] Bayandina A., Dvurechensky P., Gasnikov A., Stonyakin F., Titov A., “Mirror descentand convex optimization problems with non-smooth inequality constraints”, Large-Scale and Distributed Optimization, Lect. Notes Math., 2227, eds. Pontus Giselsson, Anders Rantzer, Springer, Cham, 2018, 181–213 | DOI | MR | Zbl
[9] Stonyakin F., Stepanov A., Gasnikov A., Titov A., “Mirror descent for constrained optimization problems with large subgradient values of functional constraints”, Kompyuternye issledovaniya i modelirovanie, 12:2 (2020), 301–317 | DOI | MR
[10] Stonyakin F. S., Alkusa M. S., Stepanov A. N., Titov A. A., “Adaptivnye algoritmy zerkalnogo spuska dlya zadach vypukloi i silno vypukloi optimizatsii s funktsionalnymi ogranicheniyami”, Diskretnyi analiz i issled. operatsii, 26:3 (2019), 88–114 | DOI | MR | Zbl
[11] Gasnikov A. V., Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska, Izd-vo MFTI, Moskva, 2018, 286 pp.
[12] Guminov S. V., Nesterov Yu. E., Dvurechenskii P. E., Gasnikov A. V., “Pryamo-dvoistvennyi uskorennyi gradientnyi metod s odnomernym poiskom dlya vypuklykh, nevypuklykh i negladkikh zadach optimizatsii”, Dokl. RAN, 485:1 (2019), 15–18 | DOI | Zbl
[13] Hinder O., Sidford A., Sohoni N. S., Near-optimal methods for minimizing star-convex functions and beyond, [e-resource], 2019, 37 pp., arXiv: 1906.11985
[14] Ben-Tal A., Nemirovski A., Lectures on modern convex optimization analysis, algorithms, and engineering applications, SIAM, Philadelphia, 2019, 647 pp. | MR
[15] Nesterov Yu. E., Effektivnye metody nelineinogo programmirovaniya, Radio i svyaz, Moskva, 1989, 301 pp.