Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 171-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A commutative semiring with zero and unity different from a ring where each nonzero element is invertible is called a semifield with zero. Let $\mathbb{R}^{\vee}_+$ be the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication. For any positive real numbers $a$ and $s$, denote by $\psi_{a,s}$ the automorphism of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ defined by the rule $\psi_{a, s}\colon a_0\vee a_1x\vee\ldots\vee a_nx^n\mapsto a_0^s\vee a_1^s(ax)\vee\ldots\vee a_n^s(ax)^n$. It is proved that the automorphisms of the semiring $\mathbb{R}_+^{\vee}[x]$ are exactly the automorphisms $\psi_{a, s}$. The ring $C(X)$ of continuous $\mathbb{R}$-valued functions defined on an arbitrary topological space $X$ is an algebra over the field $\mathbb{R}$ of real numbers. A subalgebra of $C(X)$ is any nonempty subset closed under addition and multiplication of functions and under multiplication by constants from $\mathbb{R}$. Similarly, we call a nonempty subset $A\subseteq \mathbb{R}_+^{\vee}[x]$ a subalgebra of $\mathbb{R}_+^{\vee}[x]$ if $f\vee g,fg,rf\in A$ for any $f, g\in A$ and $r\in\mathbb{R}^{\vee}_+$. It is proved that an arbitrary automorphism of the lattice of subalgebras of $\mathbb{R}_+^{\vee}[x]$ is induced by some automorphism of $\mathbb{R}_+^{\vee}[x]$. The same result also holds for the lattice of subalgebras with unity of the semiring $\mathbb{R}_+^{\vee}[x]$. The technique of one-generated subalgebras is applied.
Keywords: semiring of polynomials, lattice of subalgebras, max-addition.
Mots-clés : automorphism
@article{TIMM_2020_26_3_a14,
     author = {V. V. Sidorov},
     title = {Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {171--186},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a14/}
}
TY  - JOUR
AU  - V. V. Sidorov
TI  - Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 171
EP  - 186
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a14/
LA  - ru
ID  - TIMM_2020_26_3_a14
ER  - 
%0 Journal Article
%A V. V. Sidorov
%T Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 171-186
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a14/
%G ru
%F TIMM_2020_26_3_a14
V. V. Sidorov. Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 171-186. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a14/

[1] Gelfand I. M., Kolmogorov A. N., “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, Dokl. AN SSSR, 22:1 (1939), 11–15 | MR

[2] E. Hewitt, “Rings of real-valued continuous functions. I”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl

[3] Vechtomov E. M., “Reshetka podalgebr kolets nepreryvnykh funktsii i khyuittovskie prostranstva”, Mat. zametki, 62:5 (1997), 687–693 | MR | Zbl

[4] Sidorov V. V., “Determinability of semirings of continuous nonnegative functions with max-plus by the lattices of their subalgebras”, Lobachevskii J. Math., 40 (2019), 90–100 | DOI | MR | Zbl

[5] Sidorov V. V., “Avtomorfizmy reshetki vsekh podalgebr polukoltsa mnogochlenov ot odnoi peremennoi”, Fundament. i prikl. matematika, 17:3 (2012), 85–96 | Zbl