@article{TIMM_2020_26_3_a13,
author = {L. D. Popov},
title = {On iterative methods of finding the equilibrium in the {Arrow-Debreu} classical model of pure exchange with multiplicative utility functions of the participants},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {154--170},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a13/}
}
TY - JOUR AU - L. D. Popov TI - On iterative methods of finding the equilibrium in the Arrow-Debreu classical model of pure exchange with multiplicative utility functions of the participants JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 154 EP - 170 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a13/ LA - ru ID - TIMM_2020_26_3_a13 ER -
%0 Journal Article %A L. D. Popov %T On iterative methods of finding the equilibrium in the Arrow-Debreu classical model of pure exchange with multiplicative utility functions of the participants %J Trudy Instituta matematiki i mehaniki %D 2020 %P 154-170 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a13/ %G ru %F TIMM_2020_26_3_a13
L. D. Popov. On iterative methods of finding the equilibrium in the Arrow-Debreu classical model of pure exchange with multiplicative utility functions of the participants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 154-170. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a13/
[1] Walras L., Elements d'economie politique pure, Corbaz, Lausanne, 1874, 407 pp.
[2] Samuelson P. A., “The stability of equilibrium: comparative statics and dynamics”, Econometrica, 9:2 (1941), 97–120 | DOI | Zbl
[3] Arrow K. J., Debreu G., “Existence of equilibrium for a competitive economy”, Econometrica, 25 (1954), 265–290 | DOI | MR
[4] Arrow K. J., Hurwicz L., “On the stability of the competitive equilibrium”, Econometrica, 26:4 (1958), 522–552 | DOI | MR | Zbl
[5] Uzawa H., “Walras' tatonnenment in the theory of exchange”, Review of Economic Studies, 27:3 (1960), 182–194 | DOI
[6] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, Moskva, 1964, 835 pp.
[7] Arrow K. J., Hahn F. H., General competitive analysis, North-Holland, Amsterdam, 1971, 452 pp. | MR
[8] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, Moskva, 1972, 519 pp.
[9] Shafer W. J., Sonnenschein H. F., “Some theorems on the existence of competitive equilibrium”, J. Econ. Theory, 11:1 (1975), 83–93 | DOI | MR | Zbl
[10] Eaves B. C., “Finite solution of pure trade markets with Cobb - Douglas utilities”, Economic Equilibrium: Model Formulation and Solution, Math. Program. Study, 23, ed. A.S. Manne, Springer, Berlin; Heidelberg, 1985, 226–239 | DOI | MR
[11] Scarf H., “Some examples of global instability of the competitive equilibrium”, Internat. Econom. Rev., 1:3 (1960), 157–172 | DOI | Zbl
[12] Bala V., Majumdar M., “Chaotic tatonnement”, Econ. Theory, 2:4 (1992), 437–445 | DOI | MR | Zbl
[13] Mukherji A., “A simple example of complex dynamics”, Econ. Theory, 14:3 (1999), 741–749 | DOI | MR | Zbl
[14] Tuinstra J., “A discrete and symmetric price adjustment process on the simplex”, J. Econ. Dynamics and Control, 24:5–7 (2000), 881–907 | DOI | MR | Zbl
[15] Antipin A. S., “Ekstraproksimalnyi podkhod k vychisleniyu ravnovesii v modelyakh chistogo obmena”, Zhurn. vychisl. matematiki i mat. fiziki, 46:10 (2006), 1771–1783 | MR
[16] Cole R., Fleischer I., “Fast-converging tatonnement algorithms for one-time and ongoing market problems”, Proc. of the Fortieth Annual ACM Symposium on Theory of Computing (STOC'08), ACM, N Y, 2008, 315–324 | DOI | MR | Zbl
[17] Kitti M., “Convergence of iterative tatonnement without price normalization”, J. Econ. Dynamics and Control, 34:6 (2010), 1077–1091 | DOI | MR | Zbl
[18] Shikhman V., Nesterov Yu., Ginsburg V., “Power method tatonnements for Cobb - Douglas economies”, J. Math. Econ., 75 (2018), 84–92 | DOI | MR | Zbl