1-Lattice isomorphisms of monoids decomposable into a free product
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 142-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $M$ and $M'$ be monoids. Denote by $\rm {Sub}^1M$ the lattice of all submonoids of $M$. Any isomorphism of $\rm {Sub}^1M$ onto the lattice $\rm {Sub}^1M'$ is called a 1-lattice isomorphism of $M$ onto $M'$. We say that a bijection $\varphi$ of $M$ onto $M'$ induces a 1-lattice isomorphism $\psi$ of $M$ onto $M'$ if $\varphi(K)=\psi(K)$ for any submonoid $K\in\rm {Sub}^1M$. A monoid $M$ is strictly $1$-lattice determined if any of its 1-lattice isomorphisms onto an arbitrary monoid is induced either by an isomorphism or by an antiisomorphism. The similar notions of a group strictly determined by its subgroup lattice and a semigroup strictly determined by its subsemigroup lattice have long attracted attention and have been actively studied in the classes of groups and semigroups. For monoids almost nothing has been known here. However, the following question was asked about forty years ago: is any monoid that is decomposable into a free product strictly 1-lattice determined? A complete answer to this question is found. Namely, it is proved that an arbitrary monoid nontrivially decomposable into a free product is strictly 1-lattice determined. This result has something in common with the well-known results on the strictly lattice determinability of both a group nontrivially decomposable into a free product and a semigroup decomposable into a free product.
Keywords: monoid, submonoid lattice, free product, 1-lattice isomorphism.
@article{TIMM_2020_26_3_a12,
     author = {A. Ya. Ovsyannikov},
     title = {1-Lattice isomorphisms of monoids decomposable into a free product},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {142--153},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a12/}
}
TY  - JOUR
AU  - A. Ya. Ovsyannikov
TI  - 1-Lattice isomorphisms of monoids decomposable into a free product
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 142
EP  - 153
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a12/
LA  - ru
ID  - TIMM_2020_26_3_a12
ER  - 
%0 Journal Article
%A A. Ya. Ovsyannikov
%T 1-Lattice isomorphisms of monoids decomposable into a free product
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 142-153
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a12/
%G ru
%F TIMM_2020_26_3_a12
A. Ya. Ovsyannikov. 1-Lattice isomorphisms of monoids decomposable into a free product. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 142-153. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a12/

[1] Gein A.G., “Konechnomernye prostye algebry Li s reshetkoi podalgebr dliny 3”, Izv. vuzov. Matematika, 2012, no. 10, 74–78 | MR | Zbl

[2] Jones P.R., “On semigroups with lower semimodular lattice of subsemigroups”, J. Algebra, 324:9 (2010), 2089–2111 | DOI | MR | Zbl

[3] Kizner F.I., “Strukturnye izomorfizmy svobodnykh proizvedenii polugrupp s edinitsei ili nulem”, Mat. sb., 71:2 (1966), 251–256 | Zbl

[4] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, M., 1972, 287 pp.

[5] Korobkov S.S., “Lattice definability of certain matrix rings”, Sb. Math., 208:1 (2017), 90–102 | DOI | MR | Zbl

[6] Korobkov S.S., “Projections of finite commutative rings with identity”, Algebra i logika, 57:3 (2018), 285–305 | DOI | MR | Zbl

[7] Ovsyannikov A.J., “Epigroups whose subepigroup lattice is lower semimodular”, Semigroup Forum, 86 (2013), 155–161 | DOI | MR | Zbl

[8] Pioro K., “The subalgebra lattice of a finite algebra”, Central European J. Math., 12:7 (2014), 1052–1108 | DOI | MR | Zbl

[9] Sadovskii L.E., “O strukturnykh izomorfizmakh svobodnykh proizvedenii grupp”, Mat. sb., 63:1 (1947), 63–82

[10] Shevrin L.N., Baranskii V.A., “Strukturnye izomorfizmy polugrupp, razlozhimykh v svobodnoe proizvedenie”, Mat. sb., 71:2 (1966), 236–250 | Zbl

[11] Shevrin L.N., Ovsyannikov A.J., “Semigroups and their subsemigroup lattices”, Semigroup Forum, 27 (1983), 1–154 | DOI | MR | Zbl

[12] Shevrin L.N., Ovsyannikov A.Ya., Polugruppy i ikh podpolugruppovye reshetki, v. Ch.2, Izd-vo Ural. un-ta, Sverdlovsk, 1990, 246 pp.

[13] Shevrin L.N., Ovsyannikov A.J., Semigroups and their subsemigroup lattices, Kluwer Academic Publishers, 1996, 380 pp. | MR | Zbl

[14] Schmidt R., Subgroup Lattices of Groups, W. de Gruyter, Berlin, 2011, 587 pp. | MR