On connections between the Bochner–Phillips and Hille–Phillips functional calculi
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 118-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classical Hille–Phillips functional calculus of generators of $C_0$-semigroups, presented in the well-known monograph of these authors, uses Laplace transforms of measures as symbols and leads to bounded operators. Another important functional calculus of semigroup generators — the Bochner–Phillips calculus — uses Bernstein functions as symbols. In this work, an extension of the Hille–Phillips functional calculus is considered that leads to unbounded operators. Connections of this calculus with the Bochner–Phillips functional calculus are indicated. In particular, for generators of uniformly stable semigroups, the multiplication rule and the composition theorem are proved for functions understood in different senses. Conditions for the invertibility of operators that arise in the Bochner–Phillips calculus are obtained. Several examples are given and unsolved problems are formulated.
Keywords: Hille–Phillips functional calculus, Bochner–Phillips functional calculus, fractional powers of operators, subordinate semigroup.
@article{TIMM_2020_26_3_a10,
     author = {A. R. Mirotin},
     title = {On connections between the {Bochner{\textendash}Phillips} and {Hille{\textendash}Phillips} functional calculi},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {118--132},
     year = {2020},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a10/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - On connections between the Bochner–Phillips and Hille–Phillips functional calculi
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 118
EP  - 132
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a10/
LA  - ru
ID  - TIMM_2020_26_3_a10
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T On connections between the Bochner–Phillips and Hille–Phillips functional calculi
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 118-132
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a10/
%G ru
%F TIMM_2020_26_3_a10
A. R. Mirotin. On connections between the Bochner–Phillips and Hille–Phillips functional calculi. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 118-132. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a10/

[1] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962, 829 pp.

[2] Baeumer B., Haase M., Kovacs M., “Unbounded functional calculus for bounded groups with applications”, J. Evol. Equ., 9:1 (2009), 171–195 | MR | Zbl

[3] Martinez-Carracedo C., Santz-Alix M., The theory of fractional powers of operators, North Holland, Amsterdam, 2001, 378 pp. | MR | Zbl

[4] Korkina L.F., Rekant M.A., “Svoistva otobrazhenii skalyarnykh funktsii v operatornye lineinogo zamknutogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 153–165 | MR

[5] Korkina L.F., Rekant M.A., “Nekotorye klassy funktsii lineinogo zamknutogo operatora”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 186–200

[6] Mirotin A.R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. III. Nekotorye voprosy teorii vozmuschenii”, Izv. vuzov. Matematika, 2017, no. 12, 24–34 | Zbl

[7] Batty C.J.K., Gomilko A., Tomilov Yu., “Product formulas in functional calculi for sectorial operators”, Math. Z., 279 (2015), 479–507 | MR | Zbl

[8] Batty C.J.K., Gomilko A., Tomilov Yu., “Resolvent representations for functions of sectorial operators”, Advances in Mathematics, 308 (2017), 896–940 | MR | Zbl

[9] Mirotin A.R., “O $\mathcal{T}$-ischislenii generatorov $C_0$-polugrupp”, Sibirskii mat. zhurn., 39:3 (1998), 571–583 | MR

[10] Shilling R.L., Song R., Z. Vondrachek Z., Bernstein functions. Theory and applications, 2nd ed., de Gruyter, Berlin; Boston, 2012, 425 pp. | MR

[11] Gomilko A., Tomilov Yu., “On subordination of holomorphic semigroups”, Advances in Mathematics, 283 (2015), 155–194 | DOI | MR | Zbl

[12] Lopushanskii O.V., Sharin S.V., “Obobschennoe funktsionalnoe ischislenie tipa Khille - Fillipsa dlya mnogoparametricheskikh polugrupp”, Sib. mat. zhurn., 55:1 (2014), 131–146 | MR

[13] Mirotin A.R., On the connections of Hille-Phillips functional calculus with Bochner-Phillips functional calculus, [e-resource], 2019, 14 pp., arXiv: 1912.12423

[14] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, Moskva, 1972, 740 pp.

[15] Mirotin A.R., “Mnogomernoe $\mathcal{T}$-ischislenie generatorov $C_0$-polugrupp”, Algebra i analiz, 11:2 (1999), 142–170

[16] Widder D.V., The Laplase transform, Prinston, 1946, 412 pp. | MR

[17] Mirotin A.R., “Ob otobrazhenii sovmestnogo spektra nabora generatorov polugrupp”, Funktsionalnyi analiz i ego prilozheniya, 46:3 (2012), 62–70 | MR | Zbl

[18] Nollau V., “Uber den Logarithmus abgeschlossener Operatoren in Banachschen Raumen”, Acta Sci. Math., 30 (1969), 161–174 | MR | Zbl

[19] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 1, Preobrazovaniya Fure, Laplasa, Mellina, Nauka, Moskva, 1969, 344 pp.

[20] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integraly i ryady, Nauka, Moskva, 1981, 800 pp. | MR

[21] Brychkov Yu.A., Prudnikov A.P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, Moskva, 1977, 288 pp.