Inverse problems in the class of Q-polynomial graphs
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 14-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the class of distance-regular graphs $\Gamma$ of diameter 3 with a pseudogeometric graph $\Gamma_3$, feasible intersection arrays for the partial geometry were found for networks by Makhnev, Golubyatnikov, and Guo; for dual networks by Belousov and Makhnev; and for generalized quadrangles by Makhnev and Nirova. These authors obtained four infinite series of feasible intersection arrays of distance-regular graphs: $$\big\{c_2(u^2-m^2)+2c_2m-c_2-1,c_2(u^2-m^2),\ (c_2-1)(u^2-m^2)+2c_2m-c_2;1,c_2,u^2-m^2\big\},$$ $$\{mt,(t+1)(m-1),t+1;1,1,(m-1)t\}\ \ \text{for}\ \ m\le t,$$ $$\{lt,(t-1)(l-1),t+1;1,t-1,(l-1)t\},\ \ \text{and}\ \ \{a(p+1),ap,a+1;1,a,ap\}.$$ We find all feasible intersection arrays of $Q$-polynomial graphs from these series. In particular, we show that, among these infinite families of feasible arrays, only two arrays ($\{7,6,5;1,2,3\}$ (folded 7-cube) and $\{191,156,153;1,4,39\}$) correspond to $Q$-polynomial graphs.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
distance-regular graph, graph $\Gamma$ with a strongly regular graph $\Gamma_3$.
Mots-clés : $Q$-polynomial graph
                    
                  
                
                
                Mots-clés : $Q$-polynomial graph
@article{TIMM_2020_26_3_a1,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {Inverse problems in the class of {Q-polynomial} graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {14--22},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a1/}
}
                      
                      
                    I. N. Belousov; A. A. Makhnev. Inverse problems in the class of Q-polynomial graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 14-22. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a1/
