Mots-clés : $Q$-polynomial graph
@article{TIMM_2020_26_3_a1,
author = {I. N. Belousov and A. A. Makhnev},
title = {Inverse problems in the class of {Q-polynomial} graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {14--22},
year = {2020},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a1/}
}
I. N. Belousov; A. A. Makhnev. Inverse problems in the class of Q-polynomial graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 3, pp. 14-22. http://geodesic.mathdoc.fr/item/TIMM_2020_26_3_a1/
[1] Bang S., Koolen J., “Distance-regular graphs of diameter 3 having eigenvalue -1”, Linear Algebra and Appl., 531 (2017), 38–53 | DOI | MR | Zbl
[2] Iqbal Q., Koolen J., Park J., Rehman M., “Distance-regular graphs with diameter 3 and eigenvalue $a_2-c_3$”, Linear Algebra and Appl., 587 (2020), 271–290 | DOI | MR | Zbl
[3] Makhnev A.A., Golubyatnikov M.P., Guo Wenbin, “Inverse problems in distance-regular graphs: nets”, Communications in Mathematics and Statistics, 7:1 (2019), 69–83 | DOI | MR | Zbl
[4] Makhnev A.A., Nirova M.S., “Inverse problems in distance-regular graphs: generalized quadrangles”, Sibirean Electr. Math. Reports, 15 (2018), 927–934 | DOI | MR | Zbl
[5] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin; Heidelberg; N Y, 1989, 495 pp. | MR | Zbl
[6] Terwilliger P., “A new unequality for distance-regular graphs”, Discrete Math., 137 (1995), 319–332 | DOI | MR | Zbl
[7] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl