@article{TIMM_2020_26_2_a9,
author = {Guo Wen Bin and A. S. Kondrat'ev and N. V. Maslova and L. Miao},
title = {Finite {Groups} {Whose} {Maximal} {Subgroups} {Are} {Solvable} or {Have} {Prime} {Power} {Indices}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {125--131},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/}
}
TY - JOUR AU - Guo Wen Bin AU - A. S. Kondrat'ev AU - N. V. Maslova AU - L. Miao TI - Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 125 EP - 131 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/ LA - ru ID - TIMM_2020_26_2_a9 ER -
%0 Journal Article %A Guo Wen Bin %A A. S. Kondrat'ev %A N. V. Maslova %A L. Miao %T Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices %J Trudy Instituta matematiki i mehaniki %D 2020 %P 125-131 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/ %G ru %F TIMM_2020_26_2_a9
Guo Wen Bin; A. S. Kondrat'ev; N. V. Maslova; L. Miao. Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 125-131. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/
[1] Demina E.N., Maslova N.V., “Neabelevy kompozitsionnye faktory konechnoi gruppy s arifmeticheskimi ogranicheniyami na nerazreshimye maksimalnye podgruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 122–134
[2] Go V., Maslova N.V., Revin D.O., “O pronormalnosti podgrupp nechetnykh indeksov v nekotorykh rasshireniyakh konechnykh grupp”, Sib. mat. zhurn., 59:4 (2018), 773–790 | MR | Zbl
[3] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | Zbl
[4] Maslova N.V., “Maksimalnye podgruppy nechetnogo indeksa v konechnykh gruppakh s prostym lineinym, unitarnym ili simplekticheskim tsokolem”, Algebra i logika, 50:2 (2011), 189–208 | MR | Zbl
[5] Baryshovets P.P., “Finite nonsolvable groups in which subgroups of nonprimary index are nilpotent or are Shmidt groups”, Ukrain. Math. J., 33:1 (1981), 37–39 | DOI | MR | Zbl
[6] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | DOI | MR | Zbl
[7] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl
[8] Giudici M., Maximal subgroups of almost simple groups with socle $PSL(2, q)$, [e-resource], 2007, 11 pp., arXiv: math/0703685
[9] Gorenstein D., Finite groups, Chelsea, N Y, 1968, 520 pp. | MR
[10] Guralnick R.M., “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl
[11] Huppert B., “Singer-Zyklen in klassischen Gruppen”, Math. Z., 117:7 (1970), 141–150 | DOI | MR | Zbl
[12] Kleidman P., Liebeck M., The Subgroup structure of the finite classical groups, Cambridge Univ. Press., Cambridge, 1990, 304 pp. | MR | Zbl
[13] Thompson J.G., “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl