Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 125-131
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that all maximal subgroups of a finite solvable group are solvable and have prime power indices. However, the converse statement does not hold. Finite nonsolvable groups in which all local subgroups are solvable were studied by J. Thompson (1968). R. Guralnick (1983) described all the pairs $(G,H)$ such that $G$ is a finite nonabelian simple group and $H$ is a subgroup of prime power index in $G$. Several authors studied finite groups in which every subgroup of non-prime-power index (not necessarily maximal) is a group close to nilpotent. Weakening the conditions, E. N. Bazhanova (Demina) and N. V. Maslova (2014) considered the class $\mathfrak{J}_{\rm pr}$ of finite groups in which all nonsolvable maximal subgroups have prime power indices and, in particular, described possibilities for nonabelian composition factors of a nonsolvable group from the class $\mathfrak{J}_{\rm pr}$. In the present note, the authors continue the study of the normal structure of a nonsolvable group from $\mathfrak{J}_{\rm pr}$. It is proved that a group from $\mathfrak{J}_{\rm pr}$ contains at most one nonabelian chief factor and, for each positive integer $n$, there exists a group from $\mathfrak{J}_{\rm pr}$ such that the number of its nonabelian composition factors is at least $n$. Moreover, all almost simple groups from $\mathfrak{J}_{\rm pr}$ are determined.
Keywords:
finite group, maximal subgroup, prime power index, nonsolvable subgroup.
@article{TIMM_2020_26_2_a9,
author = {Guo Wen Bin and A. S. Kondrat'ev and N. V. Maslova and L. Miao},
title = {Finite {Groups} {Whose} {Maximal} {Subgroups} {Are} {Solvable} or {Have} {Prime} {Power} {Indices}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {125--131},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/}
}
TY - JOUR AU - Guo Wen Bin AU - A. S. Kondrat'ev AU - N. V. Maslova AU - L. Miao TI - Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 125 EP - 131 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/ LA - ru ID - TIMM_2020_26_2_a9 ER -
%0 Journal Article %A Guo Wen Bin %A A. S. Kondrat'ev %A N. V. Maslova %A L. Miao %T Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices %J Trudy Instituta matematiki i mehaniki %D 2020 %P 125-131 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/ %G ru %F TIMM_2020_26_2_a9
Guo Wen Bin; A. S. Kondrat'ev; N. V. Maslova; L. Miao. Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 125-131. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a9/