On connected components of fractal cubes
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 98-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper shows an essential difference between fractal squares and fractal cubes. The topological classification of fractal squares proposed in 2013 by K.-S. Lau et al. was based on analyzing the properties of the $\mathbb{Z}^2$-periodic extension $H=F+\mathbb{Z}^2$ of a fractal square $F$ and of its complement $H^c=\mathbb{R}^2\setminus H$. A fractal square $F\subset\mathbb{R}^2$ contains a connected component different from a line segment or a point if and only if the set $H^c$ contains a bounded connected component. We show the existence of a fractal cube $F$ in $\mathbb R^3$ for which the set $H^c=\mathbb{R}^3\setminus H$ is connected whereas the set $Q$ of connected components $K_\alpha$ of $F$ possesses the following properties: $Q$ is a totally disconnected self-similar subset of the hyperspace $C(\mathbb R^3)$, it is bi-Lipschitz isomorphic to the Cantor set $C_{1/5}$, all the sets $K_\alpha+\mathbb{Z}^3$ are connected and pairwise disjoint, and the Hausdorff dimensions $\dim_H(K_\alpha)$ of the components $K_\alpha$ assume all values from some closed interval $[a,b]$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
fractal square, superfractal, self-similar set, hyperspace
Mots-clés : fractal cube, Hausdorff dimension.
                    
                  
                
                
                Mots-clés : fractal cube, Hausdorff dimension.
@article{TIMM_2020_26_2_a7,
     author = {D. A. Vaulin and D. A. Drozdov and A. V. Tetenov},
     title = {On connected components of fractal cubes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--107},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/}
}
                      
                      
                    TY - JOUR AU - D. A. Vaulin AU - D. A. Drozdov AU - A. V. Tetenov TI - On connected components of fractal cubes JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 98 EP - 107 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/ LA - ru ID - TIMM_2020_26_2_a7 ER -
D. A. Vaulin; D. A. Drozdov; A. V. Tetenov. On connected components of fractal cubes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 98-107. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/
