On connected components of fractal cubes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 98-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper shows an essential difference between fractal squares and fractal cubes. The topological classification of fractal squares proposed in 2013 by K.-S. Lau et al. was based on analyzing the properties of the $\mathbb{Z}^2$-periodic extension $H=F+\mathbb{Z}^2$ of a fractal square $F$ and of its complement $H^c=\mathbb{R}^2\setminus H$. A fractal square $F\subset\mathbb{R}^2$ contains a connected component different from a line segment or a point if and only if the set $H^c$ contains a bounded connected component. We show the existence of a fractal cube $F$ in $\mathbb R^3$ for which the set $H^c=\mathbb{R}^3\setminus H$ is connected whereas the set $Q$ of connected components $K_\alpha$ of $F$ possesses the following properties: $Q$ is a totally disconnected self-similar subset of the hyperspace $C(\mathbb R^3)$, it is bi-Lipschitz isomorphic to the Cantor set $C_{1/5}$, all the sets $K_\alpha+\mathbb{Z}^3$ are connected and pairwise disjoint, and the Hausdorff dimensions $\dim_H(K_\alpha)$ of the components $K_\alpha$ assume all values from some closed interval $[a,b]$.
Keywords: fractal square, superfractal, self-similar set, hyperspace
Mots-clés : fractal cube, Hausdorff dimension.
@article{TIMM_2020_26_2_a7,
     author = {D. A. Vaulin and D. A. Drozdov and A. V. Tetenov},
     title = {On connected components of fractal cubes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--107},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/}
}
TY  - JOUR
AU  - D. A. Vaulin
AU  - D. A. Drozdov
AU  - A. V. Tetenov
TI  - On connected components of fractal cubes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 98
EP  - 107
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/
LA  - ru
ID  - TIMM_2020_26_2_a7
ER  - 
%0 Journal Article
%A D. A. Vaulin
%A D. A. Drozdov
%A A. V. Tetenov
%T On connected components of fractal cubes
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 98-107
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/
%G ru
%F TIMM_2020_26_2_a7
D. A. Vaulin; D. A. Drozdov; A. V. Tetenov. On connected components of fractal cubes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 98-107. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/

[1] Barnsley M.F., Hutchinson J.E., Stenflo Ö., “$V$-variable fractals: Fractals with partial self similarity”, Adv. Math., 218:6 (2008), 2051–2088 | DOI | MR | Zbl

[2] Bonk M., Merenkov S., “Quasisymmetric rigidity of square Sierpinski carpets”, Annals Math., 177 (2013), 591–643 | DOI | MR | Zbl

[3] Cristea L.L., Steinsky B., “Curves of infinite length in $4 \times 4$-labyrinth fractals”, Geom. Dedicata, 141 (2009), 1–17 | DOI | MR | Zbl

[4] Cristea L.L., Steinsky B., “Curves of infinite length in labyrinth fractals”, Proc. Edinb. Math. Soc. II. Ser., 54:2 (2011), 329–344 | DOI | MR | Zbl

[5] Falconer K.J., Fractal geometry: mathematical foundations and applications, J. Wiley and Sons, N Y, 1990, 288 pp. | MR | Zbl

[6] Hutchinson J., “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl

[7] Lau K.S., Luo J.J., Rao H., “Topological structure of fractal squares”, Math. Proc. Camb. Phil. Soc., 155 (2013), 73–86 | DOI | MR | Zbl

[8] Luo J.J., Liu J.-C., “On the classification of fractal squares”, Fractals, 24:1 (2016), 1650008 | DOI | MR

[9] Ruan H.J., Wang Y., “Topological invariants and Lipschitz equivalence of fractal squares”, J. Math. Anal. Appl., 451 (2017), 327–344 | DOI | MR | Zbl

[10] Tetenov A.V., Finiteness properties for self-similar sets:, [e-resource], 12 pp., arXiv: 2003.04202

[11] Tetenov A.V., Drozdov D.A., On the connected components of fractal cubes:, [e-resource], 6 pp., arXiv: 2002.02920