On connected components of fractal cubes
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 98-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows an essential difference between fractal squares and fractal cubes. The topological classification of fractal squares proposed in 2013 by K.-S. Lau et al. was based on analyzing the properties of the $\mathbb{Z}^2$-periodic extension $H=F+\mathbb{Z}^2$ of a fractal square $F$ and of its complement $H^c=\mathbb{R}^2\setminus H$. A fractal square $F\subset\mathbb{R}^2$ contains a connected component different from a line segment or a point if and only if the set $H^c$ contains a bounded connected component. We show the existence of a fractal cube $F$ in $\mathbb R^3$ for which the set $H^c=\mathbb{R}^3\setminus H$ is connected whereas the set $Q$ of connected components $K_\alpha$ of $F$ possesses the following properties: $Q$ is a totally disconnected self-similar subset of the hyperspace $C(\mathbb R^3)$, it is bi-Lipschitz isomorphic to the Cantor set $C_{1/5}$, all the sets $K_\alpha+\mathbb{Z}^3$ are connected and pairwise disjoint, and the Hausdorff dimensions $\dim_H(K_\alpha)$ of the components $K_\alpha$ assume all values from some closed interval $[a,b]$.
Keywords: fractal square, superfractal, self-similar set, hyperspace
Mots-clés : fractal cube, Hausdorff dimension.
@article{TIMM_2020_26_2_a7,
     author = {D. A. Vaulin and D. A. Drozdov and A. V. Tetenov},
     title = {On connected components of fractal cubes},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--107},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/}
}
TY  - JOUR
AU  - D. A. Vaulin
AU  - D. A. Drozdov
AU  - A. V. Tetenov
TI  - On connected components of fractal cubes
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 98
EP  - 107
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/
LA  - ru
ID  - TIMM_2020_26_2_a7
ER  - 
%0 Journal Article
%A D. A. Vaulin
%A D. A. Drozdov
%A A. V. Tetenov
%T On connected components of fractal cubes
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 98-107
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/
%G ru
%F TIMM_2020_26_2_a7
D. A. Vaulin; D. A. Drozdov; A. V. Tetenov. On connected components of fractal cubes. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 98-107. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a7/