Keywords: Jordan block sizes, special linear group, symplectic group.
@article{TIMM_2020_26_2_a6,
author = {T. S. Busel and I. D. Suprunenko},
title = {On the properties of irreducible representations of special linear and symplectic groups that are not large with respect to the field characteristic and regular unipotent elements from subsystem subgroups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {88--97},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a6/}
}
TY - JOUR AU - T. S. Busel AU - I. D. Suprunenko TI - On the properties of irreducible representations of special linear and symplectic groups that are not large with respect to the field characteristic and regular unipotent elements from subsystem subgroups JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 88 EP - 97 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a6/ LA - ru ID - TIMM_2020_26_2_a6 ER -
%0 Journal Article %A T. S. Busel %A I. D. Suprunenko %T On the properties of irreducible representations of special linear and symplectic groups that are not large with respect to the field characteristic and regular unipotent elements from subsystem subgroups %J Trudy Instituta matematiki i mehaniki %D 2020 %P 88-97 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a6/ %G ru %F TIMM_2020_26_2_a6
T. S. Busel; I. D. Suprunenko. On the properties of irreducible representations of special linear and symplectic groups that are not large with respect to the field characteristic and regular unipotent elements from subsystem subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 88-97. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a6/
[1] Burbaki N., Gruppy i algebry Li, gl. IV-VI, Mir, M., 1972, 334 pp. | MR
[2] Burbaki N., Gruppy i algebry Li, gl. VII-VIII, Mir, M., 1978, 342 pp. | MR
[3] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975, 263 pp.
[4] Suprunenko I.D., “Minimalnye polinomy elementov poryadka $p$ v neprivodimykh predstavleniyakh grupp Shevalle nad polyami kharakteristiki $p$”, Tr. In-ta matematiki SO RAN. Voprosy algebry i logiki, 30 (1996), 126–163, Novosibirsk | Zbl
[5] Andersen H.H., Jorgensen J., Landrock P., “The projective indecomposable modules of $SL(2,p^n)$”, Proc. London Math. Soc., 46 (1983), 38–52 | DOI | MR | Zbl
[6] Jantzen J.C., “Darstellungen halbeinfacher algebraicher Gruppen und zugeordnete kontravariante Formen”, Bonner math. Schr., 67 (1973) | MR | Zbl
[7] Jantzen J.C., Representations of algebraic groups, Math. Surveys and Monographs, 107, Second ed., 2003, 576 pp. | MR | Zbl
[8] Liebeck M.W., Seitz G.M., Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Math. Surveys and Monographs, 180, American Math. Soc., Providence, 2012, 380 pp. | DOI | MR | Zbl
[9] Korhonen M., “Jordan blocks of unipotent elements in some irreducible representations of classical groups in good characteristic”, Proc. Amer. Math. Soc., 147 (2019), 4205–4219 | DOI | MR | Zbl
[10] Seitz G.M., “Unipotent elements, tilting modules, and saturation”, Invent. Math., 141:3 (2000), 467–502 | DOI | MR | Zbl
[11] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl
[12] Suprunenko I.D., The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs Amer. Math. Soc., 200, no. 939, 2009, 154 pp. | DOI | MR
[13] Suprunenko I.D., “Special composition factors in restrictions of representations of special linear and symplectic groups to subsystem subgroups with two simple components”, Trudy Instituta matematiki, 26:1 (2018), 115–133 | MR
[14] Suprunenko I.D., Zalesskii A.E., “On restricting representations of simple algebraic groups to semisimple subgroups with two simple components”, Trudy Instituta matematiki, 13:2 (2005), 109–115
[15] Testerman D., Zalesski A.E., “Irreducible representations of simple algebraic groups in which a unipotent element is represented by a matrix with a single non-trivial Jordan block”, J. Group Theory, 21 (2018), 1–20 | DOI | MR | Zbl