Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 79-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study an overdetermined system consisting of the Navier–Stokes equations and the incompressibility equation. The system of equations describes steady spatially inhomogeneous shear flows of a viscous incompressible fluid. The nontrivial exact solution of the system under consideration is determined in the Lin–Sidorov–Aristov class. A condition for the solvability of the system for the velocity field of the form $$V_x=U\left(z\right)+u_1\left(z\right)x+u_2\left(z\right)y, \quad V_y=V\left(z\right)+v_1\left(z\right)x+v_2\left(z\right)y, \quad V_z=0$$ is obtained. In the study of the exact solution, it is stated that the solvability of the system of equations is possible under an algebraic connection between the horizontal gradients (spatial accelerations) of the velocities $u_1, u_2, v_1, v_2$ and the pressure components $P_{11}, P_{12}, P_{22}$. Pressure is a quadratic form with respect to the coordinates $x$ and $y$. It is established that the pressure components and spatial accelerations are constant. In this case, depending on the values of the parameters, an exact solution is obtained for the velocities $U$ and $V$. The exact solutions obtained can describe the inhomogeneous Poiseuille–Couette–Ekman flow.
Keywords: layered flows, shear flows, Coriolis parameter, overdetermined system, compatibility conditions.
Mots-clés : exact solutions
@article{TIMM_2020_26_2_a5,
     author = {N. V. Burmasheva and E. Yu. Prosviryakov},
     title = {Exact solution of {Navier-Stokes} equations describing spatially inhomogeneous flows of a rotating fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--87},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a5/}
}
TY  - JOUR
AU  - N. V. Burmasheva
AU  - E. Yu. Prosviryakov
TI  - Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 79
EP  - 87
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a5/
LA  - ru
ID  - TIMM_2020_26_2_a5
ER  - 
%0 Journal Article
%A N. V. Burmasheva
%A E. Yu. Prosviryakov
%T Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 79-87
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a5/
%G ru
%F TIMM_2020_26_2_a5
N. V. Burmasheva; E. Yu. Prosviryakov. Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 79-87. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a5/

[1] Aristov S.N., Shvarts K.G., Vikhrevye techeniya advektivnoi prirody vo vraschayuschemsya sloe zhidkosti, GOU VPO “Permskii gosudarstvennyi universitet”, Perm, 2006, 155 pp.

[2] Zyryanov V.N., Teoriya ustanovivshikhsya okeanicheskikh techenii, Gidrometeoizdat, Leningrad, 1985, 248 pp. | MR

[3] Korotaev G.K., Mikhailova E.N., Shapiro N.B., Teoriya ekvatorialnykh protivotechenii v Mirovom okeane, Nauk. dumka, Kiev, 1986, 208 pp.

[4] Aristov S.N., Prosviryakov E.Yu., “Neodnorodnye techeniya Kuetta”, Nelineinaya dinamika, 10:2 (2014), 177–182 | DOI | Zbl

[5] Aristov S.N., Prosviryakov E.Yu., “Krupnomasshtabnye techeniya zavikhrennoi vyazkoi neszhimaemoi zhidkosti”, Izv. vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2015, no. 4, 50–54

[6] Zubarev N.M., Prosviryakov E.Yu., “O tochnykh resheniyakh dlya sloistykh trekhmernykh nestatsionarnykh izobaricheskikh techenii vyazkoi neszhimaemoi zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 60: 6(358) (2019), 65–71 | DOI

[7] Berker R., Sur quelques cas d'integration des equations du mouvement d'un fluide visquex incompressible, Taffin-Lefort, Paris-Lille, 1936, 161 pp. | MR

[8] Shmyglevskii Yu.D., “Ob izobaricheskikh ploskikh techeniyakh vyazkoi neszhimaemoi zhidkosti”, Zhurn. vychisl. matematiki i mat. fiziki, 25:12 (1985), 1895–1898 | MR

[9] Lin C.C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1 (1958), 391–395 | DOI | MR | Zbl

[10] Sidorov A.F., “O dvukh klassakh reshenii uravnenii mekhaniki zhidkosti i gaza i ikh svyazi s teoriei beguschikh voln”, Prikl. mekhanika i teoret. fizika, 1989, no. 2, 34–40

[11] Aristov S.N., Vikhrevye techeniya v tonkikh sloyakh zhidkosti, dis. \ldots d-r. fiz.-mat. nauk, IAPU, Vladivostok, 1990, 303 pp.

[12] Privalova V.V., Prosviryakov E.Yu., Simonov M.A., “Nonlinear gradient flow of a vertical vortex fluid in a thin layer”, Russian J. Nonlinear Dynamics, 15:3 (2019), 271–283 | DOI | MR | Zbl

[13] Burmasheva N.V., Prosviryakov E.Yu., “Termokapillyarnaya konvektsiya vertikalno zavikhrennoi zhidkosti”, Teoreticheskie osnovy khimicheskoi tekhnologii, 54:1 (2020), 114–124 | DOI | MR

[14] Wheeler M.H., “On stratified water waves with critical layers and Coriolis forces”, Discrete and Continuous Dynamical Systems - A, 39:8 (2019), 4747–4770 | DOI | MR | Zbl

[15] Sarja A., Singh P., Ekkad S., “Parallel rotation for negating Coriolis force effect on heat transfer”, Aeronautical J., 124:1274 (2020), 581–596 | DOI

[16] Fein Y.Y., Kialka F., Geyer P., Gerlich S., Arndt M., “Coriolis compensation via gravity in a matter-wave interferometer”, New J. Physics, 22 (2020) | DOI

[17] Mills C., “Calibrating and operating Coriolis flow meters with respect to process effects”, Flow Measurement and Instrumentation, 71 (2020) | DOI

[18] Landau L.D., Lifshits E.M., Gidrodinamika, 6-e. izd., Fizmatlit, Moskva, 2006, 736 pp.

[19] Polyanin A.D., Zaitsev V.F., Handbook of exact solutions for ordinary differential equations, 2nd ed., Chapman/CRC, Boca Raton, 2003, 803 pp. | MR