Mots-clés : Ito formula, distribution.
@article{TIMM_2020_26_2_a4,
author = {V. A. Bovkun},
title = {Forward and backward equations for the probability characteristics of {Levy} type processes in spaces of distributions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {68--78},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a4/}
}
TY - JOUR AU - V. A. Bovkun TI - Forward and backward equations for the probability characteristics of Levy type processes in spaces of distributions JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 68 EP - 78 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a4/ LA - ru ID - TIMM_2020_26_2_a4 ER -
%0 Journal Article %A V. A. Bovkun %T Forward and backward equations for the probability characteristics of Levy type processes in spaces of distributions %J Trudy Instituta matematiki i mehaniki %D 2020 %P 68-78 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a4/ %G ru %F TIMM_2020_26_2_a4
V. A. Bovkun. Forward and backward equations for the probability characteristics of Levy type processes in spaces of distributions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 68-78. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a4/
[1] Protter P.E., Stochastic integration and differential equations, Springer-Verlag, Berlin; Heidelberg, 2005, 415 pp. | DOI | MR
[2] Kunita H., Stochastic flows and jump-diffusions, Springer, Singapore, 2019, 352 pp. | DOI | MR | Zbl
[3] Kolokoltsov V.N., Markov processes, semigroups and generators, De Gruyter Studies in Mathematics, 38, Birkhäuser, Berlin, 2011, 430 pp. | DOI | MR
[4] Cont R., Tankov P., Financial modelling with jump processes, 1st ed., Chapman and Hall/CRC, N Y, 2003, 552 pp. | DOI | MR
[5] Liu Y., Zhang Y., Wang Q., “A stochastic SIR epidemic model with Levy jump and media coverage”, Advances in Difference Equations, 2020 (2020), 1–15 | DOI | MR
[6] Kunita H., “Ito's stochastic calculus: Its surprising power for applications”, Stochastic Processes and their Applications, 120:5 (2010), 622–652 | DOI | MR | Zbl
[7] Applebaum D., Levy processes and stochastic calculus, Cambridge University Press, Cambridge, 2009, 492 pp. | DOI | MR | Zbl
[8] Gelfand I.M., Shilov G.E., Obobschennye funktsii, v. 1, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959, 470 pp.