On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 278-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study one class of nonlinear integral equations of convolution type with the Hammerstein–Nemytskii operator on the whole axis. This class has direct applications in the kinetic theory of gases, the theory of $p$-adic open-closed strings, and the theory of radiative transfer. We prove a constructive theorem on the existence of a nontrivial nonnegative solution integrable on the whole axis. In the end of the paper, we give specific examples of such equations satisfying all conditions of the main theorem.
Keywords: Hammerstein–Nemytskii equations, successive approximations, monotonicity, convexity, convergence of iterations.
@article{TIMM_2020_26_2_a21,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On the construction of an integrable solution to one class of nonlinear integral equations of {Hammerstein-Nemytskii} type on the whole axis},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {278--287},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a21/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 278
EP  - 287
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a21/
LA  - ru
ID  - TIMM_2020_26_2_a21
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 278-287
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a21/
%G ru
%F TIMM_2020_26_2_a21
Kh. A. Khachatryan; H. S. Petrosyan. On the construction of an integrable solution to one class of nonlinear integral equations of Hammerstein-Nemytskii type on the whole axis. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a21/

[1] Cercignani C., The Boltzmann equation and its application, Springer, N Y, 1988, 455 pp. | DOI | MR

[2] Zeldovich Ya.B., Raizer Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966, 687 pp.

[3] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, Teoreticheskaya i matematicheskaya fizika, 138:3 (2004), 355–368 | DOI | MR | Zbl

[4] Khachatryan Kh.A., “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii v teorii $p$-adicheskoi struny”, Izv. RAN. Cer. matematicheskaya, 82:2 (2018), 172–193 | DOI | MR | Zbl

[5] Khachatryan Kh.A., “O reshenii odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina — Nemytskogo na vsei osi”, Tr. In-ta matematiki NAN Belarusi, 21:2 (2013), 154–161

[6] Khachatryan Kh.A., “O polozhitelnoi razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii tipa Gammershteina na poluosi i na vsei pryamoi”, Izv. RAN. Ser. matematicheskaya, 79:2 (2015), 205–224 | DOI | MR | Zbl

[7] Engibaryan N.B., “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:1 (1966), 31–36

[8] Khachatryan Kh.A., “O polozhitelnykh resheniyakh odnogo klassa nelineinykh integralnykh uravnenii tipa Gammershteina — Nemytskogo na vsei pryamoi”, Tr. Mosk. mat. obschestva, 75:1 (2014), 1–14 | MR | Zbl

[9] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI | MR | Zbl

[10] Vladimirov V.S., “O nelineinykh uravneniyakh p-adicheskikh otkrytykh, zamknutykh i otkryto-zamknutykh strun”, Teoreticheskaya i matematicheskaya fizika, 149:3 (2006), 354–367 | DOI | MR | Zbl

[11] Gomez C., Prado H., Trofimchuk S., “Separation dichotomy and wavefronts for a nonlinear convolution equation”, J. Math. Anal. Appl., 420 (2014), 1–19 | DOI | MR | Zbl

[12] Zhukovskaya L.V., “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rollingovye resheniya v teorii strun”, Teoreticheskaya i matematicheskaya fizika, 146:3 (2006), 402–409 | DOI | MR

[13] Khachatryan Kh.A., “O razreshimosti odnoi granichnoi zadachi v $p$-adicheskoi teorii strun”, Tr. Mosk. mat. obschestva, 79:1 (2018), 117–132 | MR | Zbl

[14] Kolmogorov A.N., Fomin V.S., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004, 572 pp.

[15] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 499 pp.