Mean-square approximation of functions on the whole axis by algebraic polynomials with the Chebyshev-Hermite weight
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 270-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive exact inequalities of Jackson–Stechkin type between the value $E_{n-1}(f^{(s)})_{2}$ of the best mean-square approximation on $\mathbb{R}$ with the weight $\rho(x)=e^{-x^2}$ of successive derivatives $f^{(s)}$, $s=0,1,...,r$, of functions $f\in L_{2,\rho}^{(r)}(\mathbb{R})$ and average values of $m$th-order generalized moduli of continuity of the $r$th derivatives. The exact values of some extremal approximation characteristics in the space $L_{2,\rho}(\mathbb{R})$ are found for classes of functions defined in terms of these moduli of continuity.
Keywords: best approximations, Jackson–Stechkin inequalities, $m$th-order modulus of continuity, Chebyshev–Hermite polynomial.
Mots-clés : algebraic polynomial
@article{TIMM_2020_26_2_a20,
     author = {K.Tukhliev and A. M. Tuichiev},
     title = {Mean-square approximation of functions on the whole axis by algebraic polynomials with the {Chebyshev-Hermite} weight},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {270--277},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a20/}
}
TY  - JOUR
AU  - K.Tukhliev
AU  - A. M. Tuichiev
TI  - Mean-square approximation of functions on the whole axis by algebraic polynomials with the Chebyshev-Hermite weight
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 270
EP  - 277
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a20/
LA  - ru
ID  - TIMM_2020_26_2_a20
ER  - 
%0 Journal Article
%A K.Tukhliev
%A A. M. Tuichiev
%T Mean-square approximation of functions on the whole axis by algebraic polynomials with the Chebyshev-Hermite weight
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 270-277
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a20/
%G ru
%F TIMM_2020_26_2_a20
K.Tukhliev; A. M. Tuichiev. Mean-square approximation of functions on the whole axis by algebraic polynomials with the Chebyshev-Hermite weight. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 270-277. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a20/

[1] Rafalson S.Z., “O priblizhenii funktsii v srednem summami Fure — Ermita”, Izv. vuzov. Matematika, 1968, 78–84 | Zbl

[2] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 416 pp.

[3] Abilov V.A., Abilova F.V., “Nekotorye voprosy priblizheniya funktsii summami Fure — Ermita v prostranstve $L_{2}(R;e^{-x^2})$”, Izv. vuzov. Matematika, 2006, 3–12 | Zbl

[4] Vakarchuk S.B. Vakarchuk M.B., “O priblizhenii funktsii algebraicheskimi polinomami v srednem na veschestvennoi osi s vesom Chebysheva — Ermita”, Visnik Dnipropetrovskogo universitetu. Seriya matematika, 19 (6/1) (2011), 28–31

[5] Vakarchuk S.B., Shvachko A.V., “O nailuchshem priblizhenii v srednem s vesom Chebysheva — Ermita algebraicheskimi polinomami na vsei veschestvennoi osi”, Zbirnik prats Institutu matematiki NAN Ukraini, 10 (2013), 28–38 | Zbl

[6] Vakarchuk S.B., “Priblizhenie funktsii v srednem na veschestvennoi osi algebraicheskimi polinomami s vesom Chebysheva — Ermita i poperechniki funktsionalnykh klassov”, Matem. zametki, 95 (2014), 666–684 | DOI | Zbl