Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 47-55
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of extending algebraic polynomials from the unit sphere of the Euclidean space of dimension $m\ge 2$ to a concentric sphere of radius $r\ne1$ with the smallest value of the $L^2$-norm. An extension of an arbitrary polynomial is found. As a result, we obtain the best extension of a class of polynomials of given degree $n\ge 1$ whose norms in the space $L^2$ on the unit sphere do not exceed 1. We show that the best extension equals $r^n$ for $r>1$ and $r^{n-1}$ for $0$. We describe the best extension method. A.V. Parfenenkov obtained in 2009 a similar result in the uniform norm on the plane ($m=2$).
Mots-clés :
polynomial, $L^2$-norm
Keywords: Euclidean sphere, best extension.
Keywords: Euclidean sphere, best extension.
@article{TIMM_2020_26_2_a2,
author = {V. V. Arestov and A. A. Seleznev},
title = {Best $L^2${-Extension} of {Algebraic} {Polynomials} from the {Unit} {Euclidean} {Sphere} to a {Concentric} {Sphere}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {47--55},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/}
}
TY - JOUR AU - V. V. Arestov AU - A. A. Seleznev TI - Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 47 EP - 55 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/ LA - ru ID - TIMM_2020_26_2_a2 ER -
%0 Journal Article %A V. V. Arestov %A A. A. Seleznev %T Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere %J Trudy Instituta matematiki i mehaniki %D 2020 %P 47-55 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/ %G ru %F TIMM_2020_26_2_a2
V. V. Arestov; A. A. Seleznev. Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 47-55. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/
[1] Parfenenkov A.V., “Nailuchshee prodolzhenie algebraicheskikh mnogochlenov s edinichnoi okruzhnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:1 (2009), 184–194 | MR
[2] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, V 3 t., v. III, Fizmatlit, M., 2002, 728 pp.
[3] Deikalova M.V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | DOI | MR | Zbl
[4] Sobolev S.L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR
[5] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 338 pp.