Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 47-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of extending algebraic polynomials from the unit sphere of the Euclidean space of dimension $m\ge 2$ to a concentric sphere of radius $r\ne1$ with the smallest value of the $L^2$-norm. An extension of an arbitrary polynomial is found. As a result, we obtain the best extension of a class of polynomials of given degree $n\ge 1$ whose norms in the space $L^2$ on the unit sphere do not exceed 1. We show that the best extension equals $r^n$ for $r>1$ and $r^{n-1}$ for $0$. We describe the best extension method. A.V. Parfenenkov obtained in 2009 a similar result in the uniform norm on the plane ($m=2$).
Mots-clés : polynomial, $L^2$-norm
Keywords: Euclidean sphere, best extension.
@article{TIMM_2020_26_2_a2,
     author = {V. V. Arestov and A. A. Seleznev},
     title = {Best $L^2${-Extension} of {Algebraic} {Polynomials} from the {Unit} {Euclidean} {Sphere} to a {Concentric} {Sphere}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {47--55},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - A. A. Seleznev
TI  - Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 47
EP  - 55
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/
LA  - ru
ID  - TIMM_2020_26_2_a2
ER  - 
%0 Journal Article
%A V. V. Arestov
%A A. A. Seleznev
%T Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 47-55
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/
%G ru
%F TIMM_2020_26_2_a2
V. V. Arestov; A. A. Seleznev. Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 47-55. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/

[1] Parfenenkov A.V., “Nailuchshee prodolzhenie algebraicheskikh mnogochlenov s edinichnoi okruzhnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:1 (2009), 184–194 | MR

[2] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, V 3 t., v. III, Fizmatlit, M., 2002, 728 pp.

[3] Deikalova M.V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | DOI | MR | Zbl

[4] Sobolev S.L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[5] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 338 pp.