Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 47-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of extending algebraic polynomials from the unit sphere of the Euclidean space of dimension $m\ge 2$ to a concentric sphere of radius $r\ne1$ with the smallest value of the $L^2$-norm. An extension of an arbitrary polynomial is found. As a result, we obtain the best extension of a class of polynomials of given degree $n\ge 1$ whose norms in the space $L^2$ on the unit sphere do not exceed 1. We show that the best extension equals $r^n$ for $r>1$ and $r^{n-1}$ for $0$. We describe the best extension method. A.V. Parfenenkov obtained in 2009 a similar result in the uniform norm on the plane ($m=2$).
Mots-clés : polynomial, $L^2$-norm
Keywords: Euclidean sphere, best extension.
@article{TIMM_2020_26_2_a2,
     author = {V. V. Arestov and A. A. Seleznev},
     title = {Best $L^2${-Extension} of {Algebraic} {Polynomials} from the {Unit} {Euclidean} {Sphere} to a {Concentric} {Sphere}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {47--55},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/}
}
TY  - JOUR
AU  - V. V. Arestov
AU  - A. A. Seleznev
TI  - Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 47
EP  - 55
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/
LA  - ru
ID  - TIMM_2020_26_2_a2
ER  - 
%0 Journal Article
%A V. V. Arestov
%A A. A. Seleznev
%T Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 47-55
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/
%G ru
%F TIMM_2020_26_2_a2
V. V. Arestov; A. A. Seleznev. Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 47-55. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a2/