@article{TIMM_2020_26_2_a19,
author = {M. I. Sumin},
title = {On the regularization of the classical optimality conditions in convex optimal control problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {252--269},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/}
}
TY - JOUR AU - M. I. Sumin TI - On the regularization of the classical optimality conditions in convex optimal control problems JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 252 EP - 269 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/ LA - ru ID - TIMM_2020_26_2_a19 ER -
M. I. Sumin. On the regularization of the classical optimality conditions in convex optimal control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 252-269. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/
[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.
[2] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp.
[3] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2083–2102 | MR
[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna — Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl
[5] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl
[6] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 54:1 (2014), 25–49 | DOI | Zbl
[7] Arutyunov A. V., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial, Moskva, 1997, 256 pp.
[8] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikladnykh issledovanii pri mekh.-mat. fak-te MGU, M., 2004, 168 pp.
[9] Sumin M. I., “Ob ustoichivom sekventsialnom printsipe Lagranzha v vypuklom programmirovanii i ego primenenii pri reshenii neustoichivykh zadach”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 231–240 | MR
[10] Kuterin F. A., Sumin M. I., “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii, I: optimizatsiya sosredotochennoi sistemy”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 26:4 (2016), 474–489 | DOI | MR | Zbl
[11] Breitenbach T., Borzi A., “A sequential quadratic hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, J. Dyn. Control Syst., 25:3 (2019), 403–435 | DOI | MR | Zbl
[12] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Numerical Functional Analysis and Optimization, 40:13 (2019), 1489–1531 | DOI | MR | Zbl
[13] Vasilev F. P., Metody optimizatsii, v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.
[14] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, Moskva, 1979, 432 pp. | MR