On the regularization of the classical optimality conditions in convex optimal control problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 252-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a regularization of the classical optimality conditions (COCs) in a convex optimal control problem for a linear system of ordinary differential equations with a pointwise state equality constraint and a finite number of functional constraints in the form of equalities and inequalities. The set of admissible controls of the problem is traditionally embedded in the space of square integrable functions. However, the objective functional is not, generally speaking, strongly convex. The proof of regularized COCs is based on the use of two regularization parameters. One of them is “responsible” for the regularization of the dual problem, while the other is contained in a strongly convex regularizing addition to the objective functional of the original problem. The main purpose of the regularized Lagrange principle and Pontryagin maximum principle is the stable generation of minimizing approximate solutions in the sense of J. Warga. The regularized COCs: (1) are formulated as theorems on the existence of minimizing approximate solutions in the original problem with the simultaneous constructive presentation of their specific representatives; (2) are expressed in terms of regular classical Lagrange and Hamilton–Pontryagin functions; (3) are sequential generalizations of their classical counterparts and retain their general structure; (4) “overcome” the properties of ill-posedness of COCs and are regularizing algorithms for optimization problems.
Keywords: convex optimal control, convex programming, minimizing sequence, regularizing algorithm, Lagrange principle, Pontryagin maximum principle, dual regularization.
@article{TIMM_2020_26_2_a19,
     author = {M. I. Sumin},
     title = {On the regularization of the classical optimality conditions in convex optimal control problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {252--269},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - On the regularization of the classical optimality conditions in convex optimal control problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 252
EP  - 269
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/
LA  - ru
ID  - TIMM_2020_26_2_a19
ER  - 
%0 Journal Article
%A M. I. Sumin
%T On the regularization of the classical optimality conditions in convex optimal control problems
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 252-269
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/
%G ru
%F TIMM_2020_26_2_a19
M. I. Sumin. On the regularization of the classical optimality conditions in convex optimal control problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 252-269. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a19/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp.

[2] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 352 pp.

[3] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 49:12 (2009), 2083–2102 | MR

[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna — Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 51:9 (2011), 1594–1615 | MR | Zbl

[5] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 602–625 | MR | Zbl

[6] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 54:1 (2014), 25–49 | DOI | Zbl

[7] Arutyunov A. V., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial, Moskva, 1997, 256 pp.

[8] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikladnykh issledovanii pri mekh.-mat. fak-te MGU, M., 2004, 168 pp.

[9] Sumin M. I., “Ob ustoichivom sekventsialnom printsipe Lagranzha v vypuklom programmirovanii i ego primenenii pri reshenii neustoichivykh zadach”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 231–240 | MR

[10] Kuterin F. A., Sumin M. I., “Regulyarizovannyi iteratsionnyi printsip maksimuma Pontryagina v optimalnom upravlenii, I: optimizatsiya sosredotochennoi sistemy”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 26:4 (2016), 474–489 | DOI | MR | Zbl

[11] Breitenbach T., Borzi A., “A sequential quadratic hamiltonian method for solving parabolic optimal control problems with discontinuous cost functionals”, J. Dyn. Control Syst., 25:3 (2019), 403–435 | DOI | MR | Zbl

[12] Breitenbach T., Borzi A., “On the SQH scheme to solve nonsmooth PDE optimal control problems”, Numerical Functional Analysis and Optimization, 40:13 (2019), 1489–1531 | DOI | MR | Zbl

[13] Vasilev F. P., Metody optimizatsii, v 2-kh kn., MTsNMO, Moskva, 2011, 1056 pp.

[14] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, Moskva, 1979, 432 pp. | MR