On the Gibbs phenomenon for rational spline functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 238-251

Voir la notice de l'article provenant de la source Math-Net.Ru

In the case of functions $f(x)$ continuous on a given closed interval $[a,b]$ except for jump discontinuity points, the Gibbs phenomenon is studied for rational spline functions $R_{N,1}(x)=R_{N,1}(x,f,\Delta, g)$ defined for a knot grid $\Delta: a=x_0$ and a family of poles $g_i\not \in [x_{i-1},x_{i+1}]$ $(i=1,2,\dots,N-1)$ by the equalities $R_{N,1}(x)= [R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x)]/(x_i-x_{i-1})$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots,N)$. Here the rational functions $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i)$ $(i=1,2,\dots,N-1)$ are uniquely defined by the conditions $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$; we assume that $R_0(x)\equiv R_1(x)$, $R_N(x)\equiv R_{N-1}(x)$. Conditions on the knot grid $\Delta$ are found under which the Gibbs phenomenon occurs or does not occur in a neighborhood of a discontinuity point.
Mots-clés : interpolation spline
Keywords: rational spline, Gibbs phenomenon.
@article{TIMM_2020_26_2_a18,
     author = {A.-R. K. Ramazanov and A.-K. K. Ramazanov and V. G. Magomedova},
     title = {On the {Gibbs} phenomenon for rational spline functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--251},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - A.-K. K. Ramazanov
AU  - V. G. Magomedova
TI  - On the Gibbs phenomenon for rational spline functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 238
EP  - 251
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/
LA  - ru
ID  - TIMM_2020_26_2_a18
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A A.-K. K. Ramazanov
%A V. G. Magomedova
%T On the Gibbs phenomenon for rational spline functions
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 238-251
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/
%G ru
%F TIMM_2020_26_2_a18
A.-R. K. Ramazanov; A.-K. K. Ramazanov; V. G. Magomedova. On the Gibbs phenomenon for rational spline functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 238-251. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/