Keywords: rational spline, Gibbs phenomenon.
@article{TIMM_2020_26_2_a18,
author = {A.-R. K. Ramazanov and A.-K. K. Ramazanov and V. G. Magomedova},
title = {On the {Gibbs} phenomenon for rational spline functions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {238--251},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/}
}
TY - JOUR AU - A.-R. K. Ramazanov AU - A.-K. K. Ramazanov AU - V. G. Magomedova TI - On the Gibbs phenomenon for rational spline functions JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 238 EP - 251 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/ LA - ru ID - TIMM_2020_26_2_a18 ER -
A.-R. K. Ramazanov; A.-K. K. Ramazanov; V. G. Magomedova. On the Gibbs phenomenon for rational spline functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 238-251. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a18/
[1] Matematicheskaya entsiklopediya, v. 1, Sovetskaya Entsiklopediya, M., 1977
[2] Bari N.K., Trigonometricheskie ryady, GIFML, M., 1961
[3] Jerri A.J., The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations, Math. Appl., 446, Springer, Boston, 1998, 340 pp. | DOI | MR
[4] Golubov B.I., “On Gibbs phenomenon for Riesz spherical means of multiple Fourier integrals and Fourier series”, Analysis Mathematica, 4:4 (1978), 269–287 | DOI | MR | Zbl
[5] Olevska Yu.B., Olevskyi V.I., Shapka I.V., Naumenko T.S., “Application of two-dimensional Pade-type approximants for reducing the Gibbs phenomenon”, AIP Conf. Proc., 2164 (2019), 060014 | DOI
[6] Mohammad M., “On the Gibbs effect based on the quasi-affine dual tight framelets system generated using the mixed oblique extension principle”, Mathematics, 7:10 (2019), 952, 14 pp. | DOI
[7] Lin S., Xu Y., Chen Y., Chang C., Chen Y.E., Chen J., “Gibbs-phenomenon-reduced digital PWM for power amplifiers using pulse modulation”, IEEE Access, 7 (2019), 178788–178797 | DOI
[8] Subbotin Yu.N., “Variatsii na temu splainov”, Fundament. i prikl. matematika, 3:4 (1997), 1043–1058 | MR | Zbl
[9] Zavyalov Yu.S., Kvasov B. I., Miroshnichenko V. L., Metody splain–funktsii, Nauka, M., 1980, 352 pp. | MR
[10] Andreev A. S., “On interpolation by cubic splines of a function possessing discontinuities”, C. R. Acad. Bulg. Sci., 27 (1974), 881–884 | MR | Zbl
[11] Richards F. B., “A Gibbs phenomenon for spline functions”, J. Approximation Theory, 66 (1991), 344–351 | DOI | MR | Zbl
[12] Zhimin Zhang, Clyde F. Martin., “Convergence and Gibbs phenomenon in cubic spline interpolation of discontinuous functions”, J. Computational and Applied Mathematics, 87 (1997), 359–371 | DOI | MR | Zbl
[13] Kvasov B. I., Kobkov V. V., “Nekotorye svoistva kubicheskikh ermitovykh splainov s dopolnitelnymi uzlami”, Dokl. AN SSSR, 217:5 (1974), 1007–1010 | Zbl
[14] Ramazanov A.-R. K., Magomedova V. G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Mat. zametki, 103:4 (2018), 592–603 | DOI | Zbl
[15] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28 | DOI