Optimal control of a low-altitude flight in the terrain-following mode
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 225-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a terrain-following flight, it is important to minimize the deviation of the aircraft altitude from a given height function. The paper describes a class of optimal controls for the pure terrain-following problem. We consider a model of a controlled flight in a vertical plane, where the control is the elevator angle. The functions of the aerodynamic moments and forces are linear in the control and continuous in all phase variables. The aircraft is regarded as a rigid body. Based on these assumptions, it is proved that an optimal control is a function taking two extreme values. The specified class of controls is used in numerical experiments. In calculations we use a model of flight at subsonic speeds in dense layers of the atmosphere. Using a specific aircraft model as an example, we compare the efficiency of two control algorithms described by a piecewise constant function and a continuous function.
Keywords: terrain-following problem, pure terrain-following problem, flight in a vertical plane, optimal control of an aircraft.
@article{TIMM_2020_26_2_a17,
     author = {A. V. Parshikov},
     title = {Optimal control of a low-altitude flight in the terrain-following mode},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {225--237},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a17/}
}
TY  - JOUR
AU  - A. V. Parshikov
TI  - Optimal control of a low-altitude flight in the terrain-following mode
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 225
EP  - 237
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a17/
LA  - ru
ID  - TIMM_2020_26_2_a17
ER  - 
%0 Journal Article
%A A. V. Parshikov
%T Optimal control of a low-altitude flight in the terrain-following mode
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 225-237
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a17/
%G ru
%F TIMM_2020_26_2_a17
A. V. Parshikov. Optimal control of a low-altitude flight in the terrain-following mode. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 225-237. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a17/

[1] Lu Ping, Pierson Bion, “Optimal aircraft terrain-following analysis and trajectory generation”, J. of Guidance, Control, and Dynamics, 18 (1995), 555–560 | DOI

[2] Williams Paul, “Real-time computation of optimal three-dimensional aircraft trajectories including terrain-following”, AIAA Guidance, Navigation, and Control Conference and Exhibit (21–24 August 2006, Keystone, Colorado), 2006, AIAA-2006-6603 | DOI

[3] GOST 4401-81. Atmosfera standartnaya. Parametry, IPK Izdatelstvo standartov, M., 2004, 180 pp.

[4] Stevens B.L., Lewis F.L., Johnson E.N., Aircraft control and simulation: Dynamics, controls design, and autonomous systems, Third ed., Wiley-Blackwell, N Y, 2015, 768 pp. | DOI

[5] Gorbatenko S.A., Makashov E.M., Polushkin Yu.F., Sheftel L.V., Mekhanika poleta (Obschie svedeniya. Uravneniya dvizheniya), Inzh. spravochnik, Mashinostroenie, M., 1969, 420 pp.

[6] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR

[7] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp.

[8] Braison A., Kho Yu-shi., Prikladnaya teoriya optimalnogo upravleniya, Mir, Moskva, 1972, 544 pp.