@article{TIMM_2020_26_2_a13,
author = {P. D. Lebedev and A. L. Kazakov and A. A. Lempert},
title = {Numerical methods for the construction of packings of different balls into convex compact sets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {173--187},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a13/}
}
TY - JOUR AU - P. D. Lebedev AU - A. L. Kazakov AU - A. A. Lempert TI - Numerical methods for the construction of packings of different balls into convex compact sets JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 173 EP - 187 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a13/ LA - ru ID - TIMM_2020_26_2_a13 ER -
%0 Journal Article %A P. D. Lebedev %A A. L. Kazakov %A A. A. Lempert %T Numerical methods for the construction of packings of different balls into convex compact sets %J Trudy Instituta matematiki i mehaniki %D 2020 %P 173-187 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a13/ %G ru %F TIMM_2020_26_2_a13
P. D. Lebedev; A. L. Kazakov; A. A. Lempert. Numerical methods for the construction of packings of different balls into convex compact sets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 173-187. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a13/
[1] Castillo I., Kampas F.J., Pinter J.D., “Solving circle packing problems by global optimization: Numerical results and industrial applications”, European J. Operat. Research, 191:3 (2008), 786–802 | DOI | MR | Zbl
[2] Harary F., Randolph W., Mezey P.G., “A study of maximum unit-circle caterpillars – tools for the study of the shape of adsorption patterns”, Discrete Appl. Math., 67:1–3 (1996), 127–135 | DOI | MR | Zbl
[3] Wang J., “Packing of unequal spheres and automated radiosurgical treatment planning”, J. Combinator. Optim., 3:4 (1999), 453–463 | DOI | MR | Zbl
[4] Hales T., “Cannonballs and honeycombs”, Notices of the American Math. Soc., 47 (2000), 440–449 | MR | Zbl
[5] Chernov N., Stoyan Yu., Romanova T., “Mathematical model and efficient algorithms for object packing problem”, Computational Geometry, 43:5 (2010), 535–553 | DOI | MR | Zbl
[6] Stoyan Y.G., Scheithauer G. Yaskov G.N., “Packing Unequal Spheres into Various Containers”, Cybernetics Syst. Anal., 52:3 (2016), 419–426 | DOI | MR | Zbl
[7] Khlud O.M., Yaskov G.N., “Packing homothetic spheroids into a larger spheroid with the jump algorithm”, Control, Navigation and Communication Systems, 6:46 (2017), 131–135
[8] Kubach T., Bortfeldt A., Tilli T., Gehring H., “Greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid”, Asia Pacific J. Operat. Research, 28 (2011), 739–753 | DOI | MR | Zbl
[9] Huang W.Q., Li Y., Akeb H., Li C.M., “Greedy algorithms for packing unequal circles into a rectangular container”, J. Operat. Research Soc., 56:5 (2005), 539–548 | DOI | Zbl
[10] Hifi M., Yousef L., “Width beam and hill-climbing strategies for the three-dimensional sphere packing problem”, Annals of Computer Science and Information Systems, v. 2, Ser. Polish Information Processing Society, Proc. Federated Conf. on Computer Science and Information Systems, Warsaw, 2014, 421–428 | DOI | MR
[11] Zeng Z.Z., Huang W.Q., Xu R.C., Fu Z.H., “An algorithm to packing unequal spheres in a larger sphere”, Advanced Materials Research, 546–547 (2012), 1464–1469 | DOI
[12] Yamada S., Kanno J., Miyauchi M., “Multi-sized sphere packing in containers: Optimization formula for obtaining the highest density with two different sized spheres”, IPSJ Online Transactions, 4 (2011), 126–133 | DOI
[13] Kazakov A.L., Lebedev P.D., “Algoritmy postroeniya optimalnykh upakovok dlya kompaktnykh mnozhestv na ploskosti”, Vychisl. metody i programmirovanie, 16:3 (2015), 307–317
[14] Ushakov V.N., Lebedev P.D., Lavrov N.G., “Algoritmy postroeniya optimalnykh upakovok v ellipsy”, Vest. YuUrGU. Ser. Mat. modelirovanie i programmirovanie, 10:3 (2017), 67–79 | DOI | Zbl
[15] Kazakov A.L. Lempert A.A. Ta T.T., “The sphere packing problem into bounded containers in three-dimension non-euclidean space”, IFAC PAPERSONLINE, 51:32 (2018), 782–787 | DOI
[16] Lebedev P.D., Lavrov N.G., “Algoritmy postroeniya optimalnykh upakovok v ellipsoidy”, Izv. In-ta matematiki i informatiki UdGU, 52 (2018), 59–74 | DOI | MR
[17] Tot L.F., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, Moskva, 1958, 365 pp.
[18] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyuternykh tekhnologii, Moskva; Izhevsk, 2003, 336 pp.
[19] Demyanov V.F., Vasilev L.V., Nedifferentsiruemaya optimizatsiya, Nauka, Moskva, 1981, 384 pp.
[20] Polovinkin E.S., Balashov M.V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, Moskva, 2004, 416 pp.
[21] Tatarevic M., On limits of dense packing of equal spheres in a cube, [e-resource], 2015, 9 pp., arXiv: 1503.07933 | MR
[22] Stoyan Y.G., Yaskov, G., “Packing congruent hyperspheres into a hypersphere”, J. Global Optim., 52:4 (2012), 855–868 | DOI | MR | Zbl
[23] Stoyan Yu.G., Yaskov, G., “Packing identical spheres into a cylinder”, Intern. Trans. Oper. Research, 17:1 (2010), 51–70 | DOI | MR | Zbl
[24] Bukharov D.S., Kazakov A.L., “Programmnaya sistema “Vigolt” dlya resheniya zadach optimizatsii, voznikayuschikh v transportnoi logistike”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13:2 (2012), 65–74