Some properties of power operator series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 161-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear densely defined operator and a domain lying in its regular set and containing the nonpositive real semiaxis are given in a Banach space. A power bound for the norm of the resolvent of the operator at infinity is assumed to be known. We consider the question of (left, right) multiplication of a function of an operator, in particular, a complex degree of an operator, by a power operator series and the connection between the domain of this product and the domain of the power operator series. The case of the continuity of the operator function or its inverse and the possibility of taking the function under the series sign are considered separately. In some of the statements proved, certain constraints are imposed on the coefficients of the power series. Examples connected with these constraints and the constraints on the scalar function generating the operator function are analyzed.
Keywords: linear closed operator, functions of an operator, power operator series.
@article{TIMM_2020_26_2_a12,
     author = {L. F. Korkina and M. A. Rekant},
     title = {Some properties of power operator series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {161--172},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/}
}
TY  - JOUR
AU  - L. F. Korkina
AU  - M. A. Rekant
TI  - Some properties of power operator series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 161
EP  - 172
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/
LA  - ru
ID  - TIMM_2020_26_2_a12
ER  - 
%0 Journal Article
%A L. F. Korkina
%A M. A. Rekant
%T Some properties of power operator series
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 161-172
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/
%G ru
%F TIMM_2020_26_2_a12
L. F. Korkina; M. A. Rekant. Some properties of power operator series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 161-172. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/

[1] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, Iz-vo inostr. lit., M., 1962, 896 pp.

[2] Lyusternik L.A., Sobolev S.L., Elementy funktsionalnogo analiza, Nauka, M., 1965, 519 pp.

[3] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 449 pp.

[4] Balakrishnan A.V., “Fractional powers of closed operators and semigroups generated by them”, Pacific J. Math. Soc., 3 (1960), 419–437 | DOI | MR

[5] Krasnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevskii P.E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 499 pp. | MR

[6] Krein S.G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 494 pp.

[7] Komatsu H., “Fractional powers of operators. Interpolation spaces”, Pacific J. Math., 21: 1 (1967), 89–111 | DOI | MR | Zbl

[8] Repin O.A., “Ob odnoi zadache dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Izv. vuzov. Matematika, 2018, no. 8, 46–51 | Zbl

[9] Kostin V.A., Kostin D.V., Kostin A.V., “Operatornye kosinus-funktsii i granichnye zadachi”, Dokl. AN, 486:5 (2019), 531–536 | DOI | Zbl

[10] Korkina L.F., Rekant M.A., “Nekotorye klassy funktsii lineinogo zamknutogo operatora”, Tr. instituta matematiki i mekhaniki UrO RAN, 17:3 (2011), 186–200

[11] Korkina L.F., Rekant M.A., “Svoistva otobrazhenii skalyarnykh funktsii v operatornye lineinogo zamknutogo operatora”, Tr. instituta matematiki i mekhaniki UrO RAN, 21:1 (2015), 153–165 | MR

[12] Korkina L.F., Rekant M.A., “Some properties of operator exponent”, Ural. Math. J., 4:2 (2018), 33–42 | DOI | MR