Some properties of power operator series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 161-172

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear densely defined operator and a domain lying in its regular set and containing the nonpositive real semiaxis are given in a Banach space. A power bound for the norm of the resolvent of the operator at infinity is assumed to be known. We consider the question of (left, right) multiplication of a function of an operator, in particular, a complex degree of an operator, by a power operator series and the connection between the domain of this product and the domain of the power operator series. The case of the continuity of the operator function or its inverse and the possibility of taking the function under the series sign are considered separately. In some of the statements proved, certain constraints are imposed on the coefficients of the power series. Examples connected with these constraints and the constraints on the scalar function generating the operator function are analyzed.
Keywords: linear closed operator, functions of an operator, power operator series.
@article{TIMM_2020_26_2_a12,
     author = {L. F. Korkina and M. A. Rekant},
     title = {Some properties of power operator series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {161--172},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/}
}
TY  - JOUR
AU  - L. F. Korkina
AU  - M. A. Rekant
TI  - Some properties of power operator series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 161
EP  - 172
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/
LA  - ru
ID  - TIMM_2020_26_2_a12
ER  - 
%0 Journal Article
%A L. F. Korkina
%A M. A. Rekant
%T Some properties of power operator series
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 161-172
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/
%G ru
%F TIMM_2020_26_2_a12
L. F. Korkina; M. A. Rekant. Some properties of power operator series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 161-172. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a12/