On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 147-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. A graph with the following adjacency relation is defined on $\pi(G)$: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the { Gruenberg–Kegel graph} or the {prime graph} of $G$ and is denoted by $GK(G)$. In A.V. Vasil'ev's Question 16.26 from {The Kourovka Notebook}, it is required to describe all pairs of nonisomorphic finite simple nonabelian groups with identical Gruenberg–Kegel graphs. M. Hagie (2003) and M.A. Zvezdina (2013) gave such a description in the case where one of the groups coincides with a sporadic group and an alternating group, respectively. The author (2014) solved this question for pairs of finite simple groups of Lie type over fields of the same characteristic. In the present paper, we prove the following theorem. Theorem. Let $G$ be a finite simple group of exceptional Lie type over a field with $q$ elements, and let $G_1$ be a finite simple group of Lie type over a field with $q$ elements nonisomorphic to $G$, where $q$ and $q_1$ are coprime. If $GK(G)=GK(G_1)$, then one of the following holds: (1) $\{G,G_1\}=\{G_2(3),A_1(13)\}$; (2) $\{G,G_1\}=\{{^2}F_4(2)',A_3(3)\}$; (3) $\{G,G_1\}=\{{^3}D_4(q),A_2(q_1)\}$, where $(q_1-1)_3\neq 3$ and $q_1+1\neq 2^{k_1}$; (4) $\{G,G_1\}=\{{^3}D_4(q),A_4^{\pm}(q_1)\}$, where $(q_1\mp1)_5\neq 5$; (5) $\{G,G_1\}=\{G_2(q),G_2(q_1)\}$, where $q$ and $q_1$ are not powers of 3; (6) $\{G,G_1\}$ is one of the pairs $\{F_4(q),F_4(q_1)\}$, $\{{^3}D_4(q),{^3}D_4(q_1)\}$, and $\{E_8(q),E_8(q_1)\}$. The existence of pairs of groups in statements (3)–(6) is unknown.
Keywords: finite simple exceptional group of Lie type, spectrum, prime graph.
@article{TIMM_2020_26_2_a11,
     author = {M. R. Zinov'eva},
     title = {On {Finite} {Simple} {Groups} of {Exceptional} {Lie} {Type} over {Fields} of {Different} {Characteristics} with {Coinciding} {Prime} {Graphs}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {147--160},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a11/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
TI  - On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 147
EP  - 160
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a11/
LA  - ru
ID  - TIMM_2020_26_2_a11
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%T On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 147-160
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a11/
%G ru
%F TIMM_2020_26_2_a11
M. R. Zinov'eva. On Finite Simple Groups of Exceptional Lie Type over Fields of Different Characteristics with Coinciding Prime Graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 147-160. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a11/

[1] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., ed. V.D. Mazurov, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2014, 253 pp.

[2] Hagie M., “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[3] Zvezdina M.A., “O neabelevykh prostykh gruppakh s grafom prostykh chisel kak u znakoperemennoi gruppy”, Sib. mat. zhurn., 54:1 (2013), 65–76 | MR | Zbl

[4] Zinoveva M.R., “Konechnye prostye gruppy lieva tipa nad polem odnoi kharakteristiki s odinakovym grafom prostykh chisel”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 168–183 | MR

[5] Zinoveva M.R., “O konechnykh prostykh klassicheskikh gruppakh nad polyami raznykh kharakteristik, grafy prostykh chisel kotorykh sovpadayut”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:3 (2016), 101–116 | DOI

[6] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | Zbl

[7] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[8] Vasilev A.V., Vdovin E.P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[9] Vasilev A.V., Vdovin E.P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[10] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys, 3:1 (1892), 265–284 | DOI | MR | Zbl

[11] Gerono G. C., “Note sur la résolution en nombres entiers et positifs de l'équation $x^m=y^n+1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[12] Bugeaud Y., Mihăilescu P., “On the Nagell–Ljunggren equation $ \displaystyle\frac{x^n-1}{x-1}=y^q$”, Math. Scand., 101:2 (2007), 177–183 | DOI | MR | Zbl

[13] Zavarnitsine A.V., “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7:1 (2004), 81–97 | DOI | MR | Zbl

[14] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elec. Math. Rep., 6 (2009), 1–12 | MR | Zbl