Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 132-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present work is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set\textup: $$ \left\{ \begin{array}{ll} \phantom{\varepsilon}\dot{x}= A_{11}x + A_{12}y + B_1 u, x\in \mathbb{R}^{n},\ y\in \mathbb{R}^{m},\ u\in\mathbb{R}^{r},\\[1ex] \varepsilon\dot{y}=A_{21}x + A_{22}y + B_2 u, \|u\|\le 1,\\[1ex] x(0)=x_0\not=0,\quad y(0)=y_0, 0\varepsilon\ll 1,\\[1ex] x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{m},\quad T_\varepsilon \longrightarrow \min. \end{array} \right. $$ The uniqueness of the representation of the optimal control with a normalized defining vector in the limit problem is proved. The solvability of the problem is established. The limit relations for the optimal time and the vector determining the optimal control are obtained. An asymptotic analog of the implicit function theorem is proved and used to derive a complete asymptotics of the solution to the problem in powers of the small parameter $\varepsilon$.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
@article{TIMM_2020_26_2_a10,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of a {Solution} to a {Singularly} {Perturbed} {Time-Optimal} {Control} {Problem} of {Transferring} an {Object} to a {Set}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {132--146},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 132
EP  - 146
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/
LA  - ru
ID  - TIMM_2020_26_2_a10
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 132-146
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/
%G ru
%F TIMM_2020_26_2_a10
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 132-146. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | Zbl

[3] Zhang Y., Naidu D. S., Chenxiao Cai, Yun Zou., “Singular perturbations and time scales in control theories and applications: an overview 2002–2012”, Intern. J. Informaton and Systems Sciences, 9:1 (2014), 1–36 | MR

[4] Kokotovic P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[5] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp.

[6] Donchev A. L., Veliev V. M., “Singular perturbation in Mayer's problem for linear systems”, SIAM J. Control Optim., 21:4 (1983), 566–581 | DOI | MR

[7] Kurina G. A., Nguen T. Kh., “Asimptoticheskoe reshenie singulyarno vozmuschennykh lineino-kvadratichnykh zadach optimalnogo upravleniya s razryvnymi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 52:4 (2012), 628–652 | MR | Zbl

[8] Kurina G. A., Hoai N. T., “Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear-quadratic control problem in a critical case”, AIP Conference Proceedings, 1997, 2018, 020073 | DOI

[9] Danilin A. R., Ilin A. M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[10] Danilin A. R., Kovrizhnykh O. O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612–614 | DOI | Zbl

[11] Danilin A. R., Parysheva Yu. V., “Asimptotika optimalnogo znacheniya funktsionala kachestva v lineinoi zadache optimalnogo upravleniya ”, Dokl. RAN, 427:2 (2009), 151–154 | Zbl

[12] Shaburov A. A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i gladkimi geometricheskimi ogranicheniyami na upravlenie”, Izv. In-ta matematiki i informatiki Udmurt. gos. un-ta, 50:2 (2017), 110–120 | MR | Zbl

[13] Danilin A. R., Kovrizhnykh O. O., “O zavisimosti zadachi bystrodeistviya dlya lineinoi sistemy ot dvukh malykh parametrov”, Vest. Chelyab. gos. un-ta. Matematika, mekhanika, informatika, 2011, no. 14, 46–60

[14] Shaburov A. A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva i gladkimi geometricheskimi ogranicheniyami na upravlenie”, Vest. Tambov. un-ta. Seriya: estestvennye i tekhnicheskie nauki, 24:125 (2019), 119–614 | DOI

[15] Shaburov A. A., Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennykh zadach optimalnogo upravleniya s gladkimi ogranicheniyami na upravlenie i integralnym vypuklym kriteriem kachestva: dis. na soiskanie uchenoi stepeni kand. fiz.-mat. nauk, Ekaterinburg, 2019, 132 pp.

[16] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[17] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozhenie reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp.

[18] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp.