Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 132-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The present work is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control and an unbounded target set\textup: $$ \left\{ \begin{array}{ll} \phantom{\varepsilon}\dot{x}= A_{11}x + A_{12}y + B_1 u, x\in \mathbb{R}^{n},\ y\in \mathbb{R}^{m},\ u\in\mathbb{R}^{r},\\[1ex] \varepsilon\dot{y}=A_{21}x + A_{22}y + B_2 u, \|u\|\le 1,\\[1ex] x(0)=x_0\not=0,\quad y(0)=y_0, 0\varepsilon\ll 1,\\[1ex] x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{m},\quad T_\varepsilon \longrightarrow \min. \end{array} \right. $$ The uniqueness of the representation of the optimal control with a normalized defining vector in the limit problem is proved. The solvability of the problem is established. The limit relations for the optimal time and the vector determining the optimal control are obtained. An asymptotic analog of the implicit function theorem is proved and used to derive a complete asymptotics of the solution to the problem in powers of the small parameter $\varepsilon$.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
@article{TIMM_2020_26_2_a10,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of a {Solution} to a {Singularly} {Perturbed} {Time-Optimal} {Control} {Problem} of {Transferring} an {Object} to a {Set}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {132--146},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 132
EP  - 146
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/
LA  - ru
ID  - TIMM_2020_26_2_a10
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 132-146
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/
%G ru
%F TIMM_2020_26_2_a10
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 132-146. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/