Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 132-146
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The present work is devoted to a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric
constraints on the control and an unbounded target set\textup:
$$
 \left\{
 \begin{array}{ll}
 \phantom{\varepsilon}\dot{x}= A_{11}x + A_{12}y + B_1 u, 
 x\in \mathbb{R}^{n},\ y\in \mathbb{R}^{m},\ u\in\mathbb{R}^{r},\\[1ex]
 \varepsilon\dot{y}=A_{21}x + A_{22}y + B_2 u,
 \|u\|\le 1,\\[1ex]
 x(0)=x_0\not=0,\quad  y(0)=y_0,  0\varepsilon\ll 1,\\[1ex]
 x(T_\varepsilon)=0,\quad y(T_\varepsilon)\in \mathbb{R}^{m},\quad T_\varepsilon \longrightarrow \min.
 \end{array}
 \right.
 $$
The uniqueness of the representation of the optimal control with a normalized defining vector in the limit problem is proved.
The solvability of the problem is established. The limit relations for the optimal time and the vector determining the optimal control are obtained.
An asymptotic analog of the implicit function theorem is proved and used to derive a complete asymptotics of the solution to the problem in powers
of the small parameter $\varepsilon$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problem, small parameter.
                    
                  
                
                
                @article{TIMM_2020_26_2_a10,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of a {Solution} to a {Singularly} {Perturbed} {Time-Optimal} {Control} {Problem} of {Transferring} an {Object} to a {Set}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {132--146},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/}
}
                      
                      
                    TY - JOUR AU - A. R. Danilin AU - O. O. Kovrizhnykh TI - Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 132 EP - 146 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/ LA - ru ID - TIMM_2020_26_2_a10 ER -
%0 Journal Article %A A. R. Danilin %A O. O. Kovrizhnykh %T Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set %J Trudy Instituta matematiki i mehaniki %D 2020 %P 132-146 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/ %G ru %F TIMM_2020_26_2_a10
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of a Solution to a Singularly Perturbed Time-Optimal Control Problem of Transferring an Object to a Set. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 132-146. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a10/
