Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 28-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A continuous curve $k(\,{\cdot}\,)$ in a normed linear space $X$ is called monotone if the function $f(k(\tau))$ is monotone with respect to $\tau$ for any extreme functional $f$ of the unit dual sphere $S^*$. A closed set is monotone path-connected if any two points from it can be connected by a continuous monotone curve lying in this set. We prove that in a three-dimensional Banach space any closed set with lower semi-continuous metric projection is monotone path-connected if and only if the norm of the space is either cylindrical or smooth. This result partially extends a recent result of the author of this paper and B. B. Bednov, who characterized the three-dimensional spaces in which any Chebyshev set is monotone path-connected. We show that in a finite-dimensional Banach space any closed set with lower semi-continuous (continuous) metric projection is convex if and only if the space is smooth. A number of new properties of strict suns in three-dimensional spaces with cylindrical norm is put forward. It is shown that in a three-dimensional space with cylindrical norm a closed set $M$ with lower semi-continuous metric projection is a strict sun. Moreover, such a set $M$ has contractible intersections with closed balls and possesses a continuous selection of the metric projection operator. Our analysis depends substantially on the novel machinery of approximation of the unit sphere by polytopes built from tangent directions to the unit sphere.
Keywords: set with continuous metric projection, Chebyshev set, sun, monotone path-connected set.
@article{TIMM_2020_26_2_a1,
     author = {A. R. Alimov},
     title = {Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {28--46},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 28
EP  - 46
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/
LA  - ru
ID  - TIMM_2020_26_2_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 28-46
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/
%G ru
%F TIMM_2020_26_2_a1
A. R. Alimov. Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 28-46. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/

[1] Alimov A. R., Tsarkov I. G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, Uspekhi mat. nauk, 71: 1(427) (2016), 3–84 | DOI | MR | Zbl

[2] Alimov A. R., Shchepin E. V., “Convexity of suns in tangent directions”, J. Convex Anal., 26:4 (2019), 1069–1074 | DOI | MR

[3] Alimov A. R., Schepin E. B., “Vypuklost chebyshevskikh mnozhestv po kasatelnym napravleniyam”, Uspekhi mat. nauk, 73: 2(440) (2018), 185–186 | DOI | MR | Zbl

[4] Alimov A. R., “Continuity of the metric projection and local solar properties of sets”, Set-Valued Var. Anal., 27:1 (2019), 213–222 | DOI | MR | Zbl

[5] Alimov A. R., “Vyborki iz metricheskoi proektsii i strogaya solnechnost mnozhestv c nepreryvnoi metricheskoi proektsiei”, Mat. sb., 208:7 (2017), 3–18 | DOI | MR | Zbl

[6] Alimov A. R., “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matematicheskaya, 78:4 (2014), 3–18 | DOI | MR

[7] Alimov A. R., “Sokhranenie approksimativnykh svoistv podmnozhestv chebyshevskikh mnozhestv i solnts v $\ell^\infty (n)$”, Izv. RAN. Ser. matematicheskaya, 70:5 (2006), 3–12 | DOI | MR | Zbl

[8] Alimov A. R., “Monotonnaya lineinaya svyaznost mnozhestv c nepreryvnoi metricheskoi proektsiei”, Mat. mezhdunar. nauchn. konf. “Sovremennye problemy estestvennykh i gumanitarnykh nauk, ikh rol v ukreplenii nauchnykh svyazei mezhdu stranami”, posvyasch. 10-letiyu Filiala MGU im. M.B. Lomonosova v g. Dushanbe, 2019, 9–10

[9] Berdyshev V. I., “K voprosu o chebyshevskikh mnozhestvakh”, Dokl. AzSSR, 22:9 (1966), 3–5 | MR | Zbl

[10] Blatter J., Morris P. D., Wulbert D. E., “Continuity of the set-valued metric projection”, Math. Ann., 178:1 (1968), 12–24 | DOI | MR | Zbl

[11] Brøndsted A., “Convex sets and Chebyshev sets, II”, Math. Scand., 18 (1966), 5–15 | DOI | MR

[12] Brown A. L., “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. Lond. Math. Soc. (3), 41 (1980), 297–339 | DOI | MR | Zbl

[13] Brown A. L., “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[14] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), v. 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[15] Brown A. L., “On the problem of characterising suns in finite dimensional spaces”, Rend. Circ. Mat. Palermo (2) Suppl., 68 (2002), 315–328 | MR | Zbl

[16] Brown A. L., “Suns in polyhedral spaces”, Seminar of mathematical analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville, 2003, 139–146 | MR

[17] Li T., Wang J., Wen H., “Global structure and regularity of solutions to the eikonal equation”, Arch. Rational Mech. Anal., 232 (2019), 1073–1112 | DOI | MR | Zbl

[18] Nevesenko N. B., “Strogie solntsa i polunepreryvnost metricheskoi proektsii v lineinykh normirovannykh prostranstvakh”, Mat. zametki, 23:4 (1978), 563–572 | MR | Zbl

[19] Nevesenko N. B., Oshman E.B., “Metricheskaya proektsiya na vypuklye mnozhestva”, Mat. zametki, 31:1 (1982), 117–126 | MR | Zbl

[20] Phelps R. R., “A representation theorem for bounded convex sets”, Proc. Amer. Math. Soc., 11 (1960), 976–983 | DOI | MR

[21] Tsarkov I. G., “Ogranichennye chebyshevskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Mat. zametki, 36:1 (1984), 73–87 | Zbl

[22] Tsarkov I. G., “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Mat. zametki, 47:2 (1990), 137–148

[23] Tsar'kov I. G., “Singular sets of surfaces”, Russ. J. Math. Phys., 24 (2017), 263–271 | DOI | MR | Zbl

[24] Tsarkov I. G., “Nepreryvnye vyborki iz operatorov metricheskoi proektsii i ikh obobschenii”, Izv. RAN. Ser. matematicheskaya, 82:4 (2018), 199–224 | DOI | MR | Zbl

[25] Tsarkov I. G., “Slabo monotonnye mnozhestva i nepreryvnaya vyborka iz operatora pochti nailuchshego priblizheniya”, Tr. MIAN, 303 (2018), 246–257 | DOI | Zbl

[26] Tsarkov I. G., “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Mat. sb., 210:9 (2019), 129–152 | DOI | MR | Zbl

[27] Tsarkov I. G., “Gladkie resheniya uravneniya eikonala i povedenie lokalnykh minimumov funktsii rasstoyaniya”, Izv. RAN. Ser. matematicheskaya, 83:6 (2019), 167–194 | DOI | MR | Zbl