@article{TIMM_2020_26_2_a1,
author = {A. R. Alimov},
title = {Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {28--46},
year = {2020},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/}
}
TY - JOUR AU - A. R. Alimov TI - Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 28 EP - 46 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/ LA - ru ID - TIMM_2020_26_2_a1 ER -
%0 Journal Article %A A. R. Alimov %T Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces %J Trudy Instituta matematiki i mehaniki %D 2020 %P 28-46 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/ %G ru %F TIMM_2020_26_2_a1
A. R. Alimov. Convexity and monotone linear connectivity of sets with a continuous metric projection in three-dimensional spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 28-46. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a1/
[1] Alimov A. R., Tsarkov I. G., “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, Uspekhi mat. nauk, 71: 1(427) (2016), 3–84 | DOI | MR | Zbl
[2] Alimov A. R., Shchepin E. V., “Convexity of suns in tangent directions”, J. Convex Anal., 26:4 (2019), 1069–1074 | DOI | MR
[3] Alimov A. R., Schepin E. B., “Vypuklost chebyshevskikh mnozhestv po kasatelnym napravleniyam”, Uspekhi mat. nauk, 73: 2(440) (2018), 185–186 | DOI | MR | Zbl
[4] Alimov A. R., “Continuity of the metric projection and local solar properties of sets”, Set-Valued Var. Anal., 27:1 (2019), 213–222 | DOI | MR | Zbl
[5] Alimov A. R., “Vyborki iz metricheskoi proektsii i strogaya solnechnost mnozhestv c nepreryvnoi metricheskoi proektsiei”, Mat. sb., 208:7 (2017), 3–18 | DOI | MR | Zbl
[6] Alimov A. R., “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matematicheskaya, 78:4 (2014), 3–18 | DOI | MR
[7] Alimov A. R., “Sokhranenie approksimativnykh svoistv podmnozhestv chebyshevskikh mnozhestv i solnts v $\ell^\infty (n)$”, Izv. RAN. Ser. matematicheskaya, 70:5 (2006), 3–12 | DOI | MR | Zbl
[8] Alimov A. R., “Monotonnaya lineinaya svyaznost mnozhestv c nepreryvnoi metricheskoi proektsiei”, Mat. mezhdunar. nauchn. konf. “Sovremennye problemy estestvennykh i gumanitarnykh nauk, ikh rol v ukreplenii nauchnykh svyazei mezhdu stranami”, posvyasch. 10-letiyu Filiala MGU im. M.B. Lomonosova v g. Dushanbe, 2019, 9–10
[9] Berdyshev V. I., “K voprosu o chebyshevskikh mnozhestvakh”, Dokl. AzSSR, 22:9 (1966), 3–5 | MR | Zbl
[10] Blatter J., Morris P. D., Wulbert D. E., “Continuity of the set-valued metric projection”, Math. Ann., 178:1 (1968), 12–24 | DOI | MR | Zbl
[11] Brøndsted A., “Convex sets and Chebyshev sets, II”, Math. Scand., 18 (1966), 5–15 | DOI | MR
[12] Brown A. L., “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. Lond. Math. Soc. (3), 41 (1980), 297–339 | DOI | MR | Zbl
[13] Brown A. L., “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl
[14] Brown A. L., “On the connectedness properties of suns in finite dimensional spaces”, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), v. 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl
[15] Brown A. L., “On the problem of characterising suns in finite dimensional spaces”, Rend. Circ. Mat. Palermo (2) Suppl., 68 (2002), 315–328 | MR | Zbl
[16] Brown A. L., “Suns in polyhedral spaces”, Seminar of mathematical analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville, 2003, 139–146 | MR
[17] Li T., Wang J., Wen H., “Global structure and regularity of solutions to the eikonal equation”, Arch. Rational Mech. Anal., 232 (2019), 1073–1112 | DOI | MR | Zbl
[18] Nevesenko N. B., “Strogie solntsa i polunepreryvnost metricheskoi proektsii v lineinykh normirovannykh prostranstvakh”, Mat. zametki, 23:4 (1978), 563–572 | MR | Zbl
[19] Nevesenko N. B., Oshman E.B., “Metricheskaya proektsiya na vypuklye mnozhestva”, Mat. zametki, 31:1 (1982), 117–126 | MR | Zbl
[20] Phelps R. R., “A representation theorem for bounded convex sets”, Proc. Amer. Math. Soc., 11 (1960), 976–983 | DOI | MR
[21] Tsarkov I. G., “Ogranichennye chebyshevskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Mat. zametki, 36:1 (1984), 73–87 | Zbl
[22] Tsarkov I. G., “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Mat. zametki, 47:2 (1990), 137–148
[23] Tsar'kov I. G., “Singular sets of surfaces”, Russ. J. Math. Phys., 24 (2017), 263–271 | DOI | MR | Zbl
[24] Tsarkov I. G., “Nepreryvnye vyborki iz operatorov metricheskoi proektsii i ikh obobschenii”, Izv. RAN. Ser. matematicheskaya, 82:4 (2018), 199–224 | DOI | MR | Zbl
[25] Tsarkov I. G., “Slabo monotonnye mnozhestva i nepreryvnaya vyborka iz operatora pochti nailuchshego priblizheniya”, Tr. MIAN, 303 (2018), 246–257 | DOI | Zbl
[26] Tsarkov I. G., “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Mat. sb., 210:9 (2019), 129–152 | DOI | MR | Zbl
[27] Tsarkov I. G., “Gladkie resheniya uravneniya eikonala i povedenie lokalnykh minimumov funktsii rasstoyaniya”, Izv. RAN. Ser. matematicheskaya, 83:6 (2019), 167–194 | DOI | MR | Zbl