Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 5-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the best approximation of a function $f \in L_{p, \tau}(\mathbb{T}^{m})$ by trigonometric polynomials with the numbers of harmonics from a step hyperbolic cross. Sufficient conditions are established for a function $f \in L_{p, \tau_{1}}(\mathbb{T}^{m})$ to belong to a space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ in the cases $1 $, $1 \tau_{1}, \tau_{2} \infty$ and $p = q$, $ 1 \tau_{2} \tau_{1} \infty$. Estimates for the best approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$. For some relations between these parameters, it is shown that the estimates are exact.
Keywords: Lorentz space, trigonometric polynomial, best approximation, hyperbolic cross.
Mots-clés : Nikol'skii–Besov class
@article{TIMM_2020_26_2_a0,
     author = {G. A. Akishev},
     title = {Estimates for the best approximations of functions from the {Nikol'skii-Besov} class in the {Lorentz} space by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--27},
     year = {2020},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 5
EP  - 27
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/
LA  - ru
ID  - TIMM_2020_26_2_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 5-27
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/
%G ru
%F TIMM_2020_26_2_a0
G. A. Akishev. Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 5-27. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, Moskva, 1974, 333 pp.

[2] Kolyada V.I., “Perestanovki funktsii i teoremy vlozheniya”, Usp. mat. nauk, 44:4 (1989), 61–95 | MR | Zbl

[3] Edmunds D.E., Evans W.D., Hardy operators, function spaces and embedding, Springer-Verlag, Berlin; Heidelberg, 2004, 328 pp. | MR

[4] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.

[5] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187 (1989), 143–161 | MR

[6] Amanov T.I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-ata, 1976, 224 pp.

[7] Babenko K.I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskie mnogochlenami”, Dokl. AN SSSR, 132:5 (1960), 982–985 | Zbl

[8] Telyakovskii S.A., “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Mat. sb., 63:3 (1964), 426–444

[9] Mityagin B.S., “Priblizhenie funktsii v prostranstvakh $L^{p}$ i $C$ na tore”, Mat. sb., 58:4 (1962), 397–414 | Zbl

[10] Bugrov Ya.S., “Priblizhenie klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Mat. sb., 64:3 (1964), 410–418 | Zbl

[11] Galeev E.M., “Priblizhenie nekotorykh klassov periodicheskikh funktsii mnogikh peremennykh summami Fure v metrike $\tilde{L}_{p}$”, Uspekhi mat. nauk, 32:4 (1977), 251–252 | MR | Zbl

[12] Galeev E.M., “Priblizhenie summami Fure klassov funktsii s neskolkimi ogranichennymi proizvodnymi”, Mat. zam., 23:2 (1978), 197–212 | MR | Zbl

[13] Temlyakov V.N., “Priblizhenie periodicheskikh funktsii neskolkikh peremennykh s ogranichennoi smeshannoi raznostyu”, Mat. sb., 113:1 (1980), 65–80 | MR | Zbl

[14] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178 (1986), 3–112

[15] Romanyuk A.S., “Priblizhenie klassov Besova periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_{q}$”, Ukr. mat. zhurn., 43:10 (1991), 1398–1408 | MR | Zbl

[16] Romanyuk A.S., “Ob otsenkakh approksimativnykh kharakteristik klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Ukr. mat. zhurn., 49 (1997), 1250–1268 | MR

[17] Schmeisser H.-J., Sickel W., “Spaces of functions of mixed smoothness and approximation from hyperbolic crosses”, J. Approx. Th., 128 (2004), 115–150 | DOI | MR | Zbl

[18] Bekmaganbetov K.A., Toleugazy Y., “On the order of the trigonometric diameter of the anisotropic Nokol`skii–Besov class in the metric anisotropic Lorentz spaces”, Anal. Math., 45:2 (2019), 237–247 | DOI | MR | Zbl

[19] Tikhomirov V.M., “Teoriya priblizhenii”, Sovremennye problemy matematiki, Moskva, 1987, 103–270

[20] Dinh Dung , Temlyakov V.N., Ullrich T., Hyperbolic cross approximation, Ser. Advanced Courses in Mathematics CRM Barcelona, ed. S. Tikhonov, Birkhäuser, Cham, 2018, 222 pp. | MR | Zbl

[21] Temlyakov V., Multivariate approximation, Cambridge University Press, Cambridge, 2018, 551 pp. | MR | Zbl

[22] Kokilashvili V., Yildirir Y.E., “On the approximation by trigonometric polynomials in weighted Lorentz spaces”, J. Func. Spaces Applic., 8:1 (2010), 67–86 | DOI | MR | Zbl

[23] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, Moskva, 1978, 400 pp. | MR

[24] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhur., 14:4 (2014), 46–71 | Zbl

[25] Yatsenko A.A., “Iterativnye perestanovki funktsii i prostranstva Lorentsa”, Izv. vuzov. Matematika, 1998, no. 5, 73–77 | Zbl