Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 5-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the best approximation of a function $f \in L_{p, \tau}(\mathbb{T}^{m})$ by trigonometric polynomials with the numbers of harmonics from a step hyperbolic cross. Sufficient conditions are established for a function $f \in L_{p, \tau_{1}}(\mathbb{T}^{m})$ to belong to a space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ in the cases $1 $, $1 \tau_{1}, \tau_{2} \infty$ and $p = q$, $ 1 \tau_{2} \tau_{1} \infty$. Estimates for the best approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$. For some relations between these parameters, it is shown that the estimates are exact.
Keywords:
Lorentz space, trigonometric polynomial, best approximation, hyperbolic cross.
Mots-clés : Nikol'skii–Besov class
Mots-clés : Nikol'skii–Besov class
@article{TIMM_2020_26_2_a0,
author = {G. A. Akishev},
title = {Estimates for the best approximations of functions from the {Nikol'skii-Besov} class in the {Lorentz} space by trigonometric polynomials},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {5--27},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/}
}
TY - JOUR AU - G. A. Akishev TI - Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 5 EP - 27 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/ LA - ru ID - TIMM_2020_26_2_a0 ER -
%0 Journal Article %A G. A. Akishev %T Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials %J Trudy Instituta matematiki i mehaniki %D 2020 %P 5-27 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/ %G ru %F TIMM_2020_26_2_a0
G. A. Akishev. Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 5-27. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/