Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 5-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider spaces of periodic functions of many variables, specifically, the Lorentz space $L_{p, \tau}(\mathbb{T}^{m})$ and the Nikol'skii–Besov space $S_{p, \tau, \theta}^{\bar{r}}B$, and study the best approximation of a function $f \in L_{p, \tau}(\mathbb{T}^{m})$ by trigonometric polynomials with the numbers of harmonics from a step hyperbolic cross. Sufficient conditions are established for a function $f \in L_{p, \tau_{1}}(\mathbb{T}^{m})$ to belong to a space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ in the cases $1 $, $1 \tau_{1}, \tau_{2} \infty$ and $p = q$, $ 1 \tau_{2} \tau_{1} \infty$. Estimates for the best approximations of functions from the Nikol'skii–Besov class $S_{p, \tau_{1}, \theta}^{\bar{r}}B$ in the norm of the space $L_{q, \tau_{2}}(\mathbb{T}^{m})$ are derived for different relations between the parameters $p$, $q$, $\tau_{1}$, $\tau_{2}$, and $\theta$. For some relations between these parameters, it is shown that the estimates are exact.
Keywords: Lorentz space, trigonometric polynomial, best approximation, hyperbolic cross.
Mots-clés : Nikol'skii–Besov class
@article{TIMM_2020_26_2_a0,
     author = {G. A. Akishev},
     title = {Estimates for the best approximations of functions from the {Nikol'skii-Besov} class in the {Lorentz} space by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 5
EP  - 27
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/
LA  - ru
ID  - TIMM_2020_26_2_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 5-27
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/
%G ru
%F TIMM_2020_26_2_a0
G. A. Akishev. Estimates for the best approximations of functions from the Nikol'skii-Besov class in the Lorentz space by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 2, pp. 5-27. http://geodesic.mathdoc.fr/item/TIMM_2020_26_2_a0/