Asymptotic behavior of small-time reachable sets of nonlinear systems with isoperimetric constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 89-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the problem of an approximate description of reachable sets over small time intervals for affine-control systems with isoperimetric control constraints. An isoperimetric constraint is understood as an integral constraint of inequality type with the integrand depending on the control parameters and state variables of the system. Previously, a similar problem was considered under the assumption that the integrand depends only on the control parameters and is a positive definite quadratic form in these parameters. In this case, it was shown that, under certain conditions imposed on the controllability Gramian of the linearized system, the reachable set is convex and asymptotically close in shape to an ellipsoid in the state space for a sufficiently small length of the time interval. This ellipsoid is the reachable set of the system linearized along the trajectory corresponding to the null control. In this paper, it is proved that, under a slight strengthening of the conditions imposed on the controllability Gramian, this result remains valid if the integrand defining the isoperimetric constraints has the form of the sum of a positive definite quadratic form in the control parameters and a nonnegative function of the state variables. This asymptotic representation holds, in particular, for a fairly wide class of second-order systems affine in the control under the condition that the linearized system is completely controllable. The proof is based on the results of the theory of strongly convex sets and functions.
Keywords: control system, isoperimetric constraints, reachable set, asymptotics, controllability Gramian.
@article{TIMM_2020_26_1_a6,
     author = {M. I. Gusev},
     title = {Asymptotic behavior of small-time reachable sets of nonlinear systems with isoperimetric constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {89--101},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a6/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - Asymptotic behavior of small-time reachable sets of nonlinear systems with isoperimetric constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 89
EP  - 101
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a6/
LA  - ru
ID  - TIMM_2020_26_1_a6
ER  - 
%0 Journal Article
%A M. I. Gusev
%T Asymptotic behavior of small-time reachable sets of nonlinear systems with isoperimetric constraints
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 89-101
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a6/
%G ru
%F TIMM_2020_26_1_a6
M. I. Gusev. Asymptotic behavior of small-time reachable sets of nonlinear systems with isoperimetric constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a6/

[1] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[2] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Birkhauser, Boston, 2014, 445 pp. | MR | Zbl

[3] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl

[4] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp.

[5] Althoff M. Krogh B.H., “Reachability analysis of nonlinear differential-algebraic systems”, IEEE Trans. on Automatic Control, 59:2 (2014), 371–383 | DOI | MR | Zbl

[6] Kostousova E.K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychislitelnye tekhnologii, 3:2 (1998), 11–20 | MR | Zbl

[7] Lempio F., Veliov V.M., “Discrete approximations of differential inclusions”, Mitteilungen der GAMM, 21:2 (1998), 101–135 | MR

[8] Neznakhin A. A., Ushakov V. N., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Zhurn. vychisl. matematiki i mat. fiziki, 41:6 (2001), 895–908 | MR | Zbl

[9] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–16 | MR | Zbl

[10] Baier R., Gerdts M., Xausa I., “Approximation of reachable sets using optimal control algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | MR | Zbl

[11] Guseinov Kh.G., Nazlipinar A.S., “Attainable sets of the control system with limited resources”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 261–268

[12] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differential Equations Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl

[13] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems Ser. A: Math. Analysis, 11:2–3 (2004), 255–267 | MR | Zbl

[14] Raisig G., “Vypuklost mnozhestv dostizhimosti sistem upravleniya”, Avtomatika i telemekhanika, 2007, no. 9, 64–78 | MR

[15] Krener A., Schattler H., “The structure of small-time reachable sets in low dimensions”, SIAM J. Control Optim., 27:1 (1989), 120–147 | DOI | MR | Zbl

[16] Schattler H., “Small-time reachable sets and time-optimal feedback control”, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, The IMA Volumes in Mathematics and Its Applications, 78, eds. B.S. Mordukhovich, H.J. Sussmann, Springer, N Y, 1996, 203–225 | DOI | MR | Zbl

[17] Goncharova E., Ovseevich A., “Small-time reachable sets of linear systems with integral control constraints: birth of the shape of a reachable set”, J. Optim. Theory Appl., 168:2 (2016), 615–624 | DOI | MR | Zbl

[18] Gusev M.I., Osipov I.O., “On convexity of small-time reachable sets of nonlinear control systems”, AIP Conference Proceedings, 2164, no. 1, ed. M.D. Todorov, American Institute of Physics, N Y, Melville, 2019, 060007, 9 pp. | DOI | MR

[19] Gusev M.I., “On Convexity of reachable sets of a nonlinear system under integral constraints”, IFAC-PapersOnLine, 51:32 (2018), 207–212 | DOI

[20] Gusev M.I., “Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter”, Mathematical Optimization Theory and Operations Research, Proc. Internat. Conf. (MOTOR 2019), Lecture Notes in Computer Science, 11548, 2019, 461–473 | DOI

[21] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6 (1980), 11–46 | MR | Zbl