@article{TIMM_2020_26_1_a5,
author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
title = {Optimal {Strategies} in the {Treatment} of {Cancers} in the {Lotka{\textendash}Volterra} {Mathematical} {Model} of {Competition}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {71--88},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/}
}
TY - JOUR AU - N. L. Grigorenko AU - E. N. Khailov AU - E. V. Grigorieva AU - A. D. Klimenkova TI - Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 71 EP - 88 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/ LA - ru ID - TIMM_2020_26_1_a5 ER -
%0 Journal Article %A N. L. Grigorenko %A E. N. Khailov %A E. V. Grigorieva %A A. D. Klimenkova %T Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition %J Trudy Instituta matematiki i mehaniki %D 2020 %P 71-88 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/ %G ru %F TIMM_2020_26_1_a5
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/
[1] Todorov Y., Fimmel E., Bratus A.S., Semenov Y.S., Nuernberg F., “A optimal strategies for leukemia therapy: a multi-objective approach”, Russ. J. Numer. Anal. Math. Model., 26:6 (2011), 589–604 | DOI | MR | Zbl
[2] Bratus A.S., Fimmel E., Todorov Y., Semenov Y.S., Nurnberg F., “On strategies on a mathematical model for leukemia therapy”, Nonlinear Analysis: Real World Appl., 13:3 (2012), 1044–1059 | DOI | MR | Zbl
[3] Bratus A.S., Goncharov A.S., Todorov I.T., “Optimal control in a mathematical model for leukemia therapy with phase constraints”, Moscow Univ. Comput. Math. Cybern., 36:4 (2012), 178–182 | DOI | MR | Zbl
[4] Bratus A., Todorov Y., Yegorov I., Yurchenko D., “Solution of the feedback control problem in the mathematical model of leukemia therapy”, J. Optim. Theory Appl., 159:3 (2013), 590–605 | DOI | MR | Zbl
[5] Fimmel E., Semenov Y.S., Bratus A.S., “On optimal and suboptimal treatment strategies for a mathematical model of leukemia”, Math. Biosci. Eng., 10:1 (2013), 151–165 | DOI | MR | Zbl
[6] Egorov I.E., “Assessing alternative control strategies for systems with asymptotically stable equilibrium positions”, Moscow Univ. Comput. Math. Cybern., 37:3 (2013), 112–120 | DOI | MR | Zbl
[7] Sole R.V., Deisboeck T.S., “An error catastrophe in cancer?”, J. Theor. Biol., 228 (2004), 47–54 | DOI
[8] Sole R.V., Garcia I.G., Costa J., “Spatial dynamics in cancer”, Complex Systems Science in Biomedicine, Topics in Biomedical Engineering International Book Series, eds. T.S. Deisboeck, J.Y. Kresh, Springer, N Y, 2006, 557–572 | DOI
[9] Kuchumov A.G., “Matematicheskoe modelirovanie i biomekhanicheskii podkhod k opisaniyu razvitiya, diagnostike i lecheniya onkologicheskikh zabolevanii”, Rossiiskii zhurnal biomekhaniki, 14:4 (2010), 42–69
[10] Khailov E.N., Klimenkova A.D., Korobeinikov A., “Optimal control for anticancer therapy”, Extended abstracts spring 2018, Trends in mathematics, 11, eds. A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes, Birkhauser, Basel, 2019, 35–43 | DOI
[11] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.
[12] Tarasevich Yu.Yu., Matematicheskoe i kompyuternoe modelirovanie. Vvodnyi kurs, Librokom, M., 2013, 152 pp.
[13] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.
[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[15] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.
[16] Schattler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, N Y; Heidelberg; Dordrecht; London, 2012, 640 pp. | MR | Zbl
[17] Schattler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an applications of geometric methods, Springer, N Y; Heidelberg; Dordrecht; London, 2015, 496 pp. | DOI | MR
[18] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhauser, Boston, 1994, 244 pp. | DOI | MR | Zbl
[19] Levin A.Yu., “Neostsillyatsiya reshenii uravneniya $x^{n}+p_{1}(t)x^{n-1}+\dots+p_{n}(t)x=0$”, Uspekhi mat. nauk, 24:2 (1969), 43–96 | MR
[20] Zelikin M.I., Zelikina L.F., “Uklonenie funktsionala ot optimalnogo znacheniya pri chetteringe eksponentsialno ubyvaet s rostom chisla pereklyuchenii”, Differents. uravneniya, 35:11 (1999), 1468–1472 | MR | Zbl
[21] Zhu J., Trelat E., Cerf M., “Planar titling maneuver of a spacecraft: singular arcs in the minimum time problem and chattering”, Discrete Cont. Dyn. Ser. B, 21:4 (2016), 1347–1388 | DOI | MR | Zbl
[22] Yegorov I., Mairet F., Gouze J.-L., “Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature”, Optim. Control Appl. Meth., 39:2 (2018), 1084–1109 | DOI | MR | Zbl
[23] Grigorieva E., Khailov E., “Chattering and its approximation in control of psoriasis treatment”, Discrete Cont. Dyn. Ser. B, 24:5 (2019), 2251–2280 | DOI | MR | Zbl
[24] Bonnans F., Martinon P., Giorgi D., Grelard V., Maindrault S., Tissot O., Liu J., BOCOP 2.0.5 - User guide, 2017 URL: http://bocop.org | Zbl