Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 71-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Lotka–Volterra competition model is applied to describe the interaction between the concentrations of healthy and cancerous cells in diseases associated with blood cancer. The model is supplemented with a differential equation characterizing the change in the concentration of a chemotherapeutic drug. The equation contains a scalar bounded control that specifies the rate of drug intake. We consider the problem of minimizing the weighted difference between the concentrations of cancerous and healthy cells at the end time of the treatment period. The Pontryagin maximum principle is used to establish analytically the properties of an optimal control. We describe situations in which the optimal control is a bang–bang function and situations in which the control may contain a singular arc in addition to bang–bang arcs. The results obtained are confirmed by corresponding numerical calculations.
Keywords: Lotka–Volterra competition model, nonlinear control system, Pontryagin maximum principle, switching function, bang–bang control, singular arc.
@article{TIMM_2020_26_1_a5,
     author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
     title = {Optimal {Strategies} in the {Treatment} of {Cancers} in the {Lotka{\textendash}Volterra} {Mathematical} {Model} of {Competition}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--88},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/}
}
TY  - JOUR
AU  - N. L. Grigorenko
AU  - E. N. Khailov
AU  - E. V. Grigorieva
AU  - A. D. Klimenkova
TI  - Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 71
EP  - 88
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/
LA  - ru
ID  - TIMM_2020_26_1_a5
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%A E. N. Khailov
%A E. V. Grigorieva
%A A. D. Klimenkova
%T Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 71-88
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/
%G ru
%F TIMM_2020_26_1_a5
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/

[1] Todorov Y., Fimmel E., Bratus A.S., Semenov Y.S., Nuernberg F., “A optimal strategies for leukemia therapy: a multi-objective approach”, Russ. J. Numer. Anal. Math. Model., 26:6 (2011), 589–604 | DOI | MR | Zbl

[2] Bratus A.S., Fimmel E., Todorov Y., Semenov Y.S., Nurnberg F., “On strategies on a mathematical model for leukemia therapy”, Nonlinear Analysis: Real World Appl., 13:3 (2012), 1044–1059 | DOI | MR | Zbl

[3] Bratus A.S., Goncharov A.S., Todorov I.T., “Optimal control in a mathematical model for leukemia therapy with phase constraints”, Moscow Univ. Comput. Math. Cybern., 36:4 (2012), 178–182 | DOI | MR | Zbl

[4] Bratus A., Todorov Y., Yegorov I., Yurchenko D., “Solution of the feedback control problem in the mathematical model of leukemia therapy”, J. Optim. Theory Appl., 159:3 (2013), 590–605 | DOI | MR | Zbl

[5] Fimmel E., Semenov Y.S., Bratus A.S., “On optimal and suboptimal treatment strategies for a mathematical model of leukemia”, Math. Biosci. Eng., 10:1 (2013), 151–165 | DOI | MR | Zbl

[6] Egorov I.E., “Assessing alternative control strategies for systems with asymptotically stable equilibrium positions”, Moscow Univ. Comput. Math. Cybern., 37:3 (2013), 112–120 | DOI | MR | Zbl

[7] Sole R.V., Deisboeck T.S., “An error catastrophe in cancer?”, J. Theor. Biol., 228 (2004), 47–54 | DOI

[8] Sole R.V., Garcia I.G., Costa J., “Spatial dynamics in cancer”, Complex Systems Science in Biomedicine, Topics in Biomedical Engineering International Book Series, eds. T.S. Deisboeck, J.Y. Kresh, Springer, N Y, 2006, 557–572 | DOI

[9] Kuchumov A.G., “Matematicheskoe modelirovanie i biomekhanicheskii podkhod k opisaniyu razvitiya, diagnostike i lecheniya onkologicheskikh zabolevanii”, Rossiiskii zhurnal biomekhaniki, 14:4 (2010), 42–69

[10] Khailov E.N., Klimenkova A.D., Korobeinikov A., “Optimal control for anticancer therapy”, Extended abstracts spring 2018, Trends in mathematics, 11, eds. A. Korobeinikov, M. Caubergh, T. Lazaro, J. Sardanyes, Birkhauser, Basel, 2019, 35–43 | DOI

[11] Bratus A.S., Novozhilov A.S., Platonov A.P., Dinamicheskie sistemy i modeli biologii, Fizmatlit, M., 2010, 400 pp.

[12] Tarasevich Yu.Yu., Matematicheskoe i kompyuternoe modelirovanie. Vvodnyi kurs, Librokom, M., 2013, 152 pp.

[13] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp.

[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[15] Vasilev F.P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[16] Schattler H., Ledzewicz U., Geometric optimal control: theory, methods and examples, Springer, N Y; Heidelberg; Dordrecht; London, 2012, 640 pp. | MR | Zbl

[17] Schattler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: an applications of geometric methods, Springer, N Y; Heidelberg; Dordrecht; London, 2015, 496 pp. | DOI | MR

[18] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhauser, Boston, 1994, 244 pp. | DOI | MR | Zbl

[19] Levin A.Yu., “Neostsillyatsiya reshenii uravneniya $x^{n}+p_{1}(t)x^{n-1}+\dots+p_{n}(t)x=0$”, Uspekhi mat. nauk, 24:2 (1969), 43–96 | MR

[20] Zelikin M.I., Zelikina L.F., “Uklonenie funktsionala ot optimalnogo znacheniya pri chetteringe eksponentsialno ubyvaet s rostom chisla pereklyuchenii”, Differents. uravneniya, 35:11 (1999), 1468–1472 | MR | Zbl

[21] Zhu J., Trelat E., Cerf M., “Planar titling maneuver of a spacecraft: singular arcs in the minimum time problem and chattering”, Discrete Cont. Dyn. Ser. B, 21:4 (2016), 1347–1388 | DOI | MR | Zbl

[22] Yegorov I., Mairet F., Gouze J.-L., “Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature”, Optim. Control Appl. Meth., 39:2 (2018), 1084–1109 | DOI | MR | Zbl

[23] Grigorieva E., Khailov E., “Chattering and its approximation in control of psoriasis treatment”, Discrete Cont. Dyn. Ser. B, 24:5 (2019), 2251–2280 | DOI | MR | Zbl

[24] Bonnans F., Martinon P., Giorgi D., Grelard V., Maindrault S., Tissot O., Liu J., BOCOP 2.0.5 - User guide, 2017 URL: http://bocop.org | Zbl