Optimal Strategies in the Treatment of Cancers in the Lotka--Volterra Mathematical Model of Competition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 71-88

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lotka–Volterra competition model is applied to describe the interaction between the concentrations of healthy and cancerous cells in diseases associated with blood cancer. The model is supplemented with a differential equation characterizing the change in the concentration of a chemotherapeutic drug. The equation contains a scalar bounded control that specifies the rate of drug intake. We consider the problem of minimizing the weighted difference between the concentrations of cancerous and healthy cells at the end time of the treatment period. The Pontryagin maximum principle is used to establish analytically the properties of an optimal control. We describe situations in which the optimal control is a bang–bang function and situations in which the control may contain a singular arc in addition to bang–bang arcs. The results obtained are confirmed by corresponding numerical calculations.
Keywords: Lotka–Volterra competition model, nonlinear control system, Pontryagin maximum principle, switching function, bang–bang control, singular arc.
@article{TIMM_2020_26_1_a5,
     author = {N. L. Grigorenko and E. N. Khailov and E. V. Grigorieva and A. D. Klimenkova},
     title = {Optimal {Strategies} in the {Treatment} of {Cancers} in the {Lotka--Volterra} {Mathematical} {Model} of {Competition}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/}
}
TY  - JOUR
AU  - N. L. Grigorenko
AU  - E. N. Khailov
AU  - E. V. Grigorieva
AU  - A. D. Klimenkova
TI  - Optimal Strategies in the Treatment of Cancers in the Lotka--Volterra Mathematical Model of Competition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 71
EP  - 88
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/
LA  - ru
ID  - TIMM_2020_26_1_a5
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%A E. N. Khailov
%A E. V. Grigorieva
%A A. D. Klimenkova
%T Optimal Strategies in the Treatment of Cancers in the Lotka--Volterra Mathematical Model of Competition
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 71-88
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/
%G ru
%F TIMM_2020_26_1_a5
N. L. Grigorenko; E. N. Khailov; E. V. Grigorieva; A. D. Klimenkova. Optimal Strategies in the Treatment of Cancers in the Lotka--Volterra Mathematical Model of Competition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a5/