Construction of Solutions to Control Problems for Fractional-Order Linear Systems Based on Approximation Models
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 39-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an optimal control problem for a dynamical system whose motion is described by a linear differential equation with the Caputo fractional derivative of order $\alpha \in (0, 1)$. The time interval of the control process is fixed and finite. The control actions are subject to geometric constraints. The aim of the control is to minimize a given terminal-integral performance index. In order to construct a solution, we develop the following approach. First, from the considered problem, we turn to an auxiliary optimal control problem for a first-order linear system with lumped delays, which approximates the original system. After that, the auxiliary problem is reduced to an optimal control problem for an ordinary differential system. Based on this, we propose a closed-loop scheme of optimal control of the original system that uses the approximating system as a guide. In this scheme, the control in the approximating system is formed with the help of an optimal positional control strategy from the reduced problem. The effectiveness of the developed approach is illustrated by a problem in which the performance index is the norm of the terminal state of the system.
Keywords: optimal control, linear systems, fractional-order derivatives, approximation, time-delay systems, closed-loop control.
@article{TIMM_2020_26_1_a3,
     author = {M. I. Gomoyunov and N. Yu. Lukoyanov},
     title = {Construction of {Solutions} to {Control} {Problems} for {Fractional-Order} {Linear} {Systems} {Based} on {Approximation} {Models}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {39--50},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a3/}
}
TY  - JOUR
AU  - M. I. Gomoyunov
AU  - N. Yu. Lukoyanov
TI  - Construction of Solutions to Control Problems for Fractional-Order Linear Systems Based on Approximation Models
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 39
EP  - 50
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a3/
LA  - ru
ID  - TIMM_2020_26_1_a3
ER  - 
%0 Journal Article
%A M. I. Gomoyunov
%A N. Yu. Lukoyanov
%T Construction of Solutions to Control Problems for Fractional-Order Linear Systems Based on Approximation Models
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 39-50
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a3/
%G ru
%F TIMM_2020_26_1_a3
M. I. Gomoyunov; N. Yu. Lukoyanov. Construction of Solutions to Control Problems for Fractional-Order Linear Systems Based on Approximation Models. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a3/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp.

[3] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[4] Osipov Yu.S., “K teorii differentsialnykh igr sistem s posledeistviem”, Prikl. matematika i mekhanika, 35:2 (1971), 300–311 | Zbl

[5] Krasovskii N.N., Kotelnikova A.N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 97–104 | MR

[6] Gomoyunov M.I., “Solution to a zero-sum differential game with fractional dynamics via approximations”, Dyn. Games Appl., 2019, 1–27 | DOI | MR

[7] Surkov P.G., “Zadacha dinamicheskogo vosstanovleniya pravoi chasti sistemy differentsialnykh uravnenii netselogo poryadka”, Differents. uravneniya, 55:6 (2019), 865–874 | DOI | Zbl

[8] Gomoyunov M.I., “Approximation of fractional order conflict-controlled systems”, Progr. Fract. Differ. Appl., 5:2 (2019), 143–155 | DOI

[9] Lukoyanov N.Yu., Reshetova T.N., “Zadachi konfliktnogo upravleniya funktsionalnymi sistemami vysokoi razmernosti”, Prikl. matematika i mekhanika, 62:4 (1998), 586–597 | MR

[10] Gomoyunov M.I., Lukoyanov N.Yu., “Optimizatsiya garantii v funktsionalno-differentsialnykh sistemakh s posledeistviem po upravleniyu”, Prikl. matematika i mekhanika, 76:4 (2012), 515–525 | MR | Zbl

[11] Idczak D., Walczak S., “On a linear-quadratic problem with Caputo derivative”, Opuscula Math., 36:1 (2016), 49–68 | DOI | MR | Zbl

[12] Kamocki R., Majewski M., “Fractional linear control systems with Caputo derivative and their optimization”, Optim. Control Appl. Meth., 36:6 (2015), 953–967 | DOI | MR | Zbl

[13] Kubyshkin V.A., Postnov S.S., “Zadacha optimalnogo upravleniya lineinoi statsionarnoi sistemoi drobnogo poryadka v forme problemy momentov: postanovka i issledovanie”, Avtomatika i telemekhanika, 2014, no. 5, 3–17 | MR | Zbl

[14] Kaczorek T., “Minimum energy control of fractional positive electrical circuits with bounded inputs”, Circuits Syst. Signal Process, 35:6 (2016), 1815–1829 | DOI | MR | Zbl

[15] Matychyn I., Onyshchenko V., “Optimal control of linear systems with fractional derivatives”, Fract. Calc. Appl. Anal., 21:1 (2018), 134–150 | DOI | MR | Zbl

[16] Diethelm K., The analysis of fractional differential equations, Springer, Berlin, 2010, 247 pp. | DOI | MR | Zbl

[17] Gomoyunov M.I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Frac. Calc. Appl. Anal., 21:5 (2018), 1238–1261 | DOI | MR

[18] Krasovskii N.N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724 | Zbl

[19] Repin Yu.M., “O priblizhennoi zamene sistem s zapazdyvaniem obyknovennymi dinamicheskimi sistemami”, Prikl. matematika i mekhanika, 29:2 (1965), 226–235 | Zbl

[20] Kurzhanskii A.B., “K approksimatsii lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Differents. uravneniya, 3:12 (1967), 2094–2107 | MR

[21] Lukoyanov N.Yu., Plaksin A.R., “On approximations of time-delay control systems”, IFAC-PapersOnLine, 48:25 (2015), 178–182 | DOI

[22] Chavez J.P., Zhang Z., Liu Y., “A numerical approach for the bifurcation analysis of nonsmooth delay equations”, Commun. Nonlinear Sci. Numer. Simulat., 83 (2020) | DOI | MR

[23] Lukoyanov N.Yu., Gomoyunov M.I., “Differential games on minmax of the positional quality index”, Dyn. Games Appl., 9:3 (2019), 780–799 | DOI | MR | Zbl