Ultrafilters and maximal linked systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 274-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The structure of ultrafilters of a broadly understood measurable space and of maximal linked systems defined on this space is studied. Bitopological spaces of ultrafilters and maximal linked spaces obtained in both cases by equipping the space with topologies of Wallman and Stone types are considered; the bitopological space of ultrafilters can be considered as a subspace of the bitopological space whose points are maximal linked systems. For an abstract attainability problem with constraints of asymptotic nature, ultrafilters can be used as generalized elements in extension constructions; for the latter case, we present a new implementation that involves the application of linked families of subsets of the set of ordinary solutions in the construction of constraints of asymptotic nature. A natural generalization of the usual “linkedness” is considered, when it is postulated that the intersection of sets of subfamilies of the original family defining the measurable space of cardinality not exceeding a given positive integer is nonempty. For this case, we establish relations connecting ultrafilters and maximal linked systems considered in the specified generalized sense.
Keywords: bitopological space, maximal linked system, topology, ultrafilter.
@article{TIMM_2020_26_1_a20,
     author = {A. G. Chentsov},
     title = {Ultrafilters and maximal linked systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--292},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a20/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Ultrafilters and maximal linked systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 274
EP  - 292
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a20/
LA  - ru
ID  - TIMM_2020_26_1_a20
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Ultrafilters and maximal linked systems
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 274-292
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a20/
%G ru
%F TIMM_2020_26_1_a20
A. G. Chentsov. Ultrafilters and maximal linked systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 274-292. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a20/

[1] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[2] Dvalishvili B. P., Bitopological spaces: Theory, relations with generalized algebraic structures, and applications, Mathematics studies, Nort-Holland, 2005, 422 pp. | MR | Zbl

[3] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[4] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 52 (2018), 86–102

[5] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 2011, no. 1, 113–142 | Zbl

[6] Chentsov A. G., “Finitely additive measures and extensions of abstract control problem”, J. Math. Sci., 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[7] Chentsov A. G., “Kompaktifikatory v konstruktsiyakh rasshirenii zadach o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 294–309 | MR

[8] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp.

[9] Chentsov A. G., “Ob odnom predstavlenii rezultatov deistviya priblizhennykh reshenii v zadache s ogranicheniyami asimptoticheskogo kharaktera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:2 (2011), 225–239

[10] Chentsov A. G., “Ob odnom primere predstavleniya prostranstva ultrafiltrov algebry mnozhestv”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:4 (2011), 293–311

[11] Chentsov A. G., Baklanov A. P., “Ob odnoi zadache asimptoticheskogo analiza, svyazannoi s postroeniem oblasti dostizhimosti”, Tr. MIRAN, 291 (2015), 292–311 | DOI | Zbl

[12] Chentsov A. G., Baklanov A. P., Savenkov I. I., “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 2016, no. 1(47), 54–118 | MR | Zbl

[13] Chentsov A. G., “Ultrafiltry izmerimykh prostranstv kak obobschennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 268–293 | Zbl

[14] Chentsov A. G., Pytkeev E. G., “Nekotorye topologicheskie konstruktsii rasshirenii abstraktnykh zadach o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 312–329

[15] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 2017, no. 3, 122–141

[16] Chentsov A. G., “Bitopologicheskie prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 24:1 (2018), 257–272 | MR

[17] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006, 336 pp.

[18] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90

[19] Mill J. van., Supercompactness and Wallman spaces, Amsterdam. Math. Center Tract., 85, 1977, 238 pp. | MR | Zbl

[20] Strok M., Szymanski A., “Compact metric spaces have binary subbases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[21] Chentsov A. G., “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 49 (2017), 55–79 | Zbl

[22] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, 1989, 7–128

[23] Chentsov A. G., “Superkompaktnye prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 25:2 (2019), 240–257 | MR

[24] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp.

[25] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp.

[26] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004, 368 pp.

[27] Chentsov A. G., “Mnozhestva prityazheniya v abstraktnykh zadachakh o dostizhimosti: ekvivalentnye predstavleniya i osnovnye svoistva”, Izv. vuzov. Matematika, 2013, no. 11, 33–50

[28] Chentsov A. G., “Preobrazovaniya ultrafiltrov i ikh primenenie v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 2012, no. 3, 85–102 | MR | Zbl

[29] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht;Boston;London, 2002, 408 pp. | MR | Zbl

[30] Chentsov A. G., “Nekotorye svoistva ultrafiltrov, svyazannye s konstruktsiyami rasshirenii”, Vestn. Udmurt. un-ta (Matematika. Mekhanika. Kompyuternye nauki), 2014, no. 1, 87–101 | Zbl