Mots-clés : Gâteaux gradient, gradient descent method, variable control domain.
@article{TIMM_2020_26_1_a19,
author = {A. V. Fominykh and V. V. Karelin and L. N. Polyakova},
title = {Gradient method for solving some types of differential inclusions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {256--273},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/}
}
TY - JOUR AU - A. V. Fominykh AU - V. V. Karelin AU - L. N. Polyakova TI - Gradient method for solving some types of differential inclusions JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 256 EP - 273 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/ LA - ru ID - TIMM_2020_26_1_a19 ER -
A. V. Fominykh; V. V. Karelin; L. N. Polyakova. Gradient method for solving some types of differential inclusions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 256-273. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/
[1] Blagodatskikh V.I, Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN SSSR, 169 (1985), 194–252 | Zbl
[2] Watbled F., “On singular perturbations for differential inclusions on the infinite interval”, J. Math. Anal. Appl., 310:2 (2005), 362–378 | DOI | MR | Zbl
[3] Gama R., Smirnov G., “Stability and optimality of solutions to differential inclusions via averaging method”, Set-Valued and Variational Analysis, 22:2 (2014), 349–374 | DOI | MR | Zbl
[4] Cheng Y., “Existence of solutions for a class of nonlinear evolution inclusions with nonlocal conditions”, J. Optim. Theory Appl., 162:1 (2014), 13–33 | DOI | MR | Zbl
[5] Fominyh A.V., “A method for solving differential inclusions with fixed right end”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matematika. Informatika. Protsessy upravleniya, 14:4 (2018), 302–315 | DOI | MR
[6] Fominyh A.V., “A numerical method for finding the optimal solution of a differential inclusion”, Vestnik St. Petersburg University: Mathematics, 51:4 (2018), 397–406 | DOI | MR | Zbl
[7] Sandberg M., “Convergence of the forward Euler method for nonconvex differential inclusions”, SIAM J. Numer. Anal., 47:1 (2008), 308–320 | DOI | MR
[8] Bastien J., “Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions”, Zeitschrift fur Angewandte Mathematik und Physik, 64 (2013), 955–966 | DOI | MR | Zbl
[9] Beyn W-J., Rieger J., “The implicit Euler scheme for one-sided Lipschitz differential inclusions”, Discrete and Continuous Dynamical Systems. Series B, 14:2 (2010), 409–428 | DOI | MR | Zbl
[10] Lempio F., “Modified Euler methods for differential inclusions”, Set-Valued Analysis and Differential Inclusions, A Collection of Papers Resulting from A Workshop Held in Pamporovo (Bulgaria, September 17-21, 1990), Progr. Systems Control Theory, eds. A.B. Kurzhanski, M. Veliov, Birkhauser Verlag Publ., Boston, Basel, Berlin, 1993, 131–148 | MR | Zbl
[11] Taubert K., “Dierenzenverfahren fiir Schwingungen mit trockener und zdher Reibung und fiir Regelungssysteme”, Numerische Mathematik, 1976, no. 26, 379–395 | DOI | MR | Zbl
[12] Veliov V., “Second order discrete approximations to strongly convex differential inclusions”, Systems and Control Letters, 13:3 (1989), 263–269 | DOI | MR | Zbl
[13] Dontchev A., Lempio F., “Difference methods for differential inclusions: A surve”, SIAM Review, 34:2 (1992), 263–294 | DOI | MR | Zbl
[14] Schilling K., “An algorithm to solve boundary value problems for differential inclusions and applications in optimal control”, Numer. Funct. Anal. Optim., 10:7 (1989), 733–764 | DOI | MR | Zbl
[15] Blagodatskikh V.I., Vvedenie v optimalnoe upravlenie, Vysshaya shkola, M., 2001, 239 pp.
[16] Demyanov V.F., Usloviya ekstremuma i variatsionnoe ischislenie, Vysshaya shkola, M., 2005, 335 pp.
[17] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 741 pp.
[18] Penot J.P., “On the convergence of descent algorithms”, Comput. Optim. Appl., 23:3 (2002), 279–284 | DOI | MR | Zbl
[19] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 226 pp. | MR
[20] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp.
[21] Polyakova L.N., “Neobkhodimye usloviya eksremuma kvazidifferentsiruemykh funktsii”, Vestn. Leningr. un-ta, 1980, no. 13, 57–62 | Zbl
[22] Mikhalevich V.S., “Posledovatelnye algoritmy optimizatsii i ikh primenenie”, Kibernetika, 1:1 (1965), 44–55
[23] Krylov I.A., Chernousko F.L., “Reshenie zadach optimalnogo upravleniya metodom lokalnykh variatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 6:1 (1966), 203–217 | Zbl