Gradient method for solving some types of differential inclusions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 256-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss some classes of problems with differential inclusions, for which an efficient algorithm based on the gradient method is developed. The first part of the paper describes an algorithm for solving differential inclusions with a free or a fixed right end and a convex continuous multivalued mapping that admits a support function with a continuous derivative with respect to the phase coordinates. This algorithm reduces the problem under consideration to the problem of minimizing a certain functional in a function space. For this functional, the Gâteaux gradient is obtained and necessary and, in some cases, sufficient minimum conditions are found. Further, the gradient descent method is applied to the functional. In the second part of the paper, the developed approach is illustrated by solving three main classes of differential inclusions: (1) a differential inclusion obtained from a control system with a variable control domain depending on the phase coordinates, (2) a differential inclusion containing the direct sum, union, or intersection of convex sets in the right-hand side, (3) a linear interval system of ODEs considered as a differential inclusion.
Keywords: differential inclusion, support function, linear interval system
Mots-clés : Gâteaux gradient, gradient descent method, variable control domain.
@article{TIMM_2020_26_1_a19,
     author = {A. V. Fominykh and V. V. Karelin and L. N. Polyakova},
     title = {Gradient method for solving some types of differential inclusions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {256--273},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/}
}
TY  - JOUR
AU  - A. V. Fominykh
AU  - V. V. Karelin
AU  - L. N. Polyakova
TI  - Gradient method for solving some types of differential inclusions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 256
EP  - 273
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/
LA  - ru
ID  - TIMM_2020_26_1_a19
ER  - 
%0 Journal Article
%A A. V. Fominykh
%A V. V. Karelin
%A L. N. Polyakova
%T Gradient method for solving some types of differential inclusions
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 256-273
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/
%G ru
%F TIMM_2020_26_1_a19
A. V. Fominykh; V. V. Karelin; L. N. Polyakova. Gradient method for solving some types of differential inclusions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 256-273. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a19/

[1] Blagodatskikh V.I, Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN SSSR, 169 (1985), 194–252 | Zbl

[2] Watbled F., “On singular perturbations for differential inclusions on the infinite interval”, J. Math. Anal. Appl., 310:2 (2005), 362–378 | DOI | MR | Zbl

[3] Gama R., Smirnov G., “Stability and optimality of solutions to differential inclusions via averaging method”, Set-Valued and Variational Analysis, 22:2 (2014), 349–374 | DOI | MR | Zbl

[4] Cheng Y., “Existence of solutions for a class of nonlinear evolution inclusions with nonlocal conditions”, J. Optim. Theory Appl., 162:1 (2014), 13–33 | DOI | MR | Zbl

[5] Fominyh A.V., “A method for solving differential inclusions with fixed right end”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matematika. Informatika. Protsessy upravleniya, 14:4 (2018), 302–315 | DOI | MR

[6] Fominyh A.V., “A numerical method for finding the optimal solution of a differential inclusion”, Vestnik St. Petersburg University: Mathematics, 51:4 (2018), 397–406 | DOI | MR | Zbl

[7] Sandberg M., “Convergence of the forward Euler method for nonconvex differential inclusions”, SIAM J. Numer. Anal., 47:1 (2008), 308–320 | DOI | MR

[8] Bastien J., “Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions”, Zeitschrift fur Angewandte Mathematik und Physik, 64 (2013), 955–966 | DOI | MR | Zbl

[9] Beyn W-J., Rieger J., “The implicit Euler scheme for one-sided Lipschitz differential inclusions”, Discrete and Continuous Dynamical Systems. Series B, 14:2 (2010), 409–428 | DOI | MR | Zbl

[10] Lempio F., “Modified Euler methods for differential inclusions”, Set-Valued Analysis and Differential Inclusions, A Collection of Papers Resulting from A Workshop Held in Pamporovo (Bulgaria, September 17-21, 1990), Progr. Systems Control Theory, eds. A.B. Kurzhanski, M. Veliov, Birkhauser Verlag Publ., Boston, Basel, Berlin, 1993, 131–148 | MR | Zbl

[11] Taubert K., “Dierenzenverfahren fiir Schwingungen mit trockener und zdher Reibung und fiir Regelungssysteme”, Numerische Mathematik, 1976, no. 26, 379–395 | DOI | MR | Zbl

[12] Veliov V., “Second order discrete approximations to strongly convex differential inclusions”, Systems and Control Letters, 13:3 (1989), 263–269 | DOI | MR | Zbl

[13] Dontchev A., Lempio F., “Difference methods for differential inclusions: A surve”, SIAM Review, 34:2 (1992), 263–294 | DOI | MR | Zbl

[14] Schilling K., “An algorithm to solve boundary value problems for differential inclusions and applications in optimal control”, Numer. Funct. Anal. Optim., 10:7 (1989), 733–764 | DOI | MR | Zbl

[15] Blagodatskikh V.I., Vvedenie v optimalnoe upravlenie, Vysshaya shkola, M., 2001, 239 pp.

[16] Demyanov V.F., Usloviya ekstremuma i variatsionnoe ischislenie, Vysshaya shkola, M., 2005, 335 pp.

[17] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 741 pp.

[18] Penot J.P., “On the convergence of descent algorithms”, Comput. Optim. Appl., 23:3 (2002), 279–284 | DOI | MR | Zbl

[19] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 226 pp. | MR

[20] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp.

[21] Polyakova L.N., “Neobkhodimye usloviya eksremuma kvazidifferentsiruemykh funktsii”, Vestn. Leningr. un-ta, 1980, no. 13, 57–62 | Zbl

[22] Mikhalevich V.S., “Posledovatelnye algoritmy optimizatsii i ikh primenenie”, Kibernetika, 1:1 (1965), 44–55

[23] Krylov I.A., Chernousko F.L., “Reshenie zadach optimalnogo upravleniya metodom lokalnykh variatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 6:1 (1966), 203–217 | Zbl