@article{TIMM_2020_26_1_a18,
author = {V. N. Ushakov and M. V. Pershakov},
title = {On {Two-Sided} {Approximations} of {Reachable} {Sets} of {Control} {Systems} with {Geometric} {Constraints} on the {Controls}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {239--255},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/}
}
TY - JOUR AU - V. N. Ushakov AU - M. V. Pershakov TI - On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 239 EP - 255 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/ LA - ru ID - TIMM_2020_26_1_a18 ER -
%0 Journal Article %A V. N. Ushakov %A M. V. Pershakov %T On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls %J Trudy Instituta matematiki i mehaniki %D 2020 %P 239-255 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/ %G ru %F TIMM_2020_26_1_a18
V. N. Ushakov; M. V. Pershakov. On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 239-255. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/
[1] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[2] Kurzhanskii A.B., Izbrannye trudy, Izd-vo MGU, M., 2009, 756 pp.
[3] Kurzhanski A.B., Filippova T.F., “On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control”, Advances in Nonlinear Dynamics and Control, Ser. PSCT, 17, ed. A.B. Kurzhanski, Birkhauser, Boston, 1993, 122–188 | MR
[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[5] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb., 112(154):3(7) (1980), 307–330 | DOI | MR | Zbl
[6] Nikolskii M.S., “Ob approksimatsii mnozhestva dostizhimosti dlya differentsialnogo vklyucheniya”, Vest. Moskov. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 1987, no. 4, 31–34
[7] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp.
[8] Kurzhanski A.B., Valyi I., “Ellipsoidal techniques for dynamic systems: Control synthesis for uncertain systems”, Dynamics and Control, 2:2 (1992), 87–111 | DOI | MR | Zbl
[9] Ovseevich A.I., Chernousko F.L., “Dvustoronnie otsenki oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 46:5 (1982), 737–744 | DOI | MR | Zbl
[10] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI
[11] Veliov V., “On the time-discretization of control systems”, SIAM J. Control Optim., 35:5, 1470–1486 | DOI | MR | Zbl
[12] Kostousova E.K., “Ob ogranichennosti vneshnikh poliedralnykh otsenok mnozhestv dostizhimosti lineinykh sistem”, Zhurn. vychisl. matematiki i mat. fiziki, 48:6 (2008), 974–989 | DOI | MR | Zbl
[13] Guseinov Kh.G., Moiseev A.N., Ushakov V.N., “Ob approksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 62:2 (1998), 179–187 | DOI | MR
[14] Gornov A.Yu., Vychislitelnye tekhnologii resheniya zadach optimalnogo upravleniya, Nauka, Novosibirsk, 2000, 297 pp.
[15] Lotov A.V., “Novaya vneshnyaya otsenka mnozhestva dostizhimosti nelineinoi mnogoshagovoi dinamicheskoi sistemy”, Zhurn. vychislit. matematiki i mat. fiziki, 58:2 (2018), 209–219 | DOI | Zbl
[16] Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parshikov G.V., “K resheniyu zadach o sblizhenii upravlyaemykh sistem”, Tr. MIAN, 291 (2015), 276–291 | DOI | Zbl