On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 239-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a nonlinear control system in Euclidean space on a finite time interval with controls subject to geometric constraints. The question of constructing lower and upper (by inclusion) approximations of reachable sets of this system is studied. Under certain conditions, estimates are obtained for the discrepancy (in the Hausdorff metric) between the lower and upper approximations of the reachable sets.
Keywords: control system, control, differential inclusion, geometric constraints, reachable set, approximation.
@article{TIMM_2020_26_1_a18,
     author = {V. N. Ushakov and M. V. Pershakov},
     title = {On {Two-Sided} {Approximations} of {Reachable} {Sets} of {Control} {Systems} with {Geometric} {Constraints} on the {Controls}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {239--255},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - M. V. Pershakov
TI  - On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 239
EP  - 255
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/
LA  - ru
ID  - TIMM_2020_26_1_a18
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A M. V. Pershakov
%T On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 239-255
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/
%G ru
%F TIMM_2020_26_1_a18
V. N. Ushakov; M. V. Pershakov. On Two-Sided Approximations of Reachable Sets of Control Systems with Geometric Constraints on the Controls. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 239-255. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a18/

[1] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.

[2] Kurzhanskii A.B., Izbrannye trudy, Izd-vo MGU, M., 2009, 756 pp.

[3] Kurzhanski A.B., Filippova T.F., “On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control”, Advances in Nonlinear Dynamics and Control, Ser. PSCT, 17, ed. A.B. Kurzhanski, Birkhauser, Boston, 1993, 122–188 | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[5] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb., 112(154):3(7) (1980), 307–330 | DOI | MR | Zbl

[6] Nikolskii M.S., “Ob approksimatsii mnozhestva dostizhimosti dlya differentsialnogo vklyucheniya”, Vest. Moskov. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 1987, no. 4, 31–34

[7] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp.

[8] Kurzhanski A.B., Valyi I., “Ellipsoidal techniques for dynamic systems: Control synthesis for uncertain systems”, Dynamics and Control, 2:2 (1992), 87–111 | DOI | MR | Zbl

[9] Ovseevich A.I., Chernousko F.L., “Dvustoronnie otsenki oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 46:5 (1982), 737–744 | DOI | MR | Zbl

[10] Gusev M.I., Zykov I.V., “On extremal properties of boundary points of reachable sets for a system with integrally constrained control”, IFAC-PapersOnLine, 50:1 (2017), 4082–4087 | DOI

[11] Veliov V., “On the time-discretization of control systems”, SIAM J. Control Optim., 35:5, 1470–1486 | DOI | MR | Zbl

[12] Kostousova E.K., “Ob ogranichennosti vneshnikh poliedralnykh otsenok mnozhestv dostizhimosti lineinykh sistem”, Zhurn. vychisl. matematiki i mat. fiziki, 48:6 (2008), 974–989 | DOI | MR | Zbl

[13] Guseinov Kh.G., Moiseev A.N., Ushakov V.N., “Ob approksimatsii oblastei dostizhimosti upravlyaemykh sistem”, Prikl. matematika i mekhanika, 62:2 (1998), 179–187 | DOI | MR

[14] Gornov A.Yu., Vychislitelnye tekhnologii resheniya zadach optimalnogo upravleniya, Nauka, Novosibirsk, 2000, 297 pp.

[15] Lotov A.V., “Novaya vneshnyaya otsenka mnozhestva dostizhimosti nelineinoi mnogoshagovoi dinamicheskoi sistemy”, Zhurn. vychislit. matematiki i mat. fiziki, 58:2 (2018), 209–219 | DOI | Zbl

[16] Ushakov V.N., Ukhobotov V.I., Ushakov A.V., Parshikov G.V., “K resheniyu zadach o sblizhenii upravlyaemykh sistem”, Tr. MIAN, 291 (2015), 276–291 | DOI | Zbl