On the construction of a piecewise affine value function in an infinite-horizon optimal control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 223-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the approximate solution of an infinite-horizon optimal control problem for a nonlinear system of differential equations with an integral cost functional. We use the technique of piecewise linearization (“hybridization”) of the original nonlinear system followed by the analysis of the resulting switched system. Then the methods of piecewise affine value and control functions, the method of dynamic programming, and the comparison principle are applied. Two cases are considered sequentially: with continuous piecewise affine value and control functions and with functions admitting discontinuities. In the latter case, it is possible to increase the effectiveness of the proposed approach by allowing gaps. Theorems on sufficient conditions for the solvability of the control problem are formulated and proved. The theorems also provide upper estimates of the minimized functional. Computationally simple algorithms are derived for the construction of estimates of the value function for this problem and of the corresponding feedback control. The operation of the proposed algorithm is demonstrated for a problem of control of a wheeled robot on the plane.
Keywords: nonlinear dynamics, linearization, switched system, optimal control, dynamic programming, piecewise affine value function.
@article{TIMM_2020_26_1_a17,
     author = {P. A. Tochilin},
     title = {On the construction of a piecewise affine value function in an infinite-horizon optimal control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {223--238},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a17/}
}
TY  - JOUR
AU  - P. A. Tochilin
TI  - On the construction of a piecewise affine value function in an infinite-horizon optimal control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 223
EP  - 238
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a17/
LA  - ru
ID  - TIMM_2020_26_1_a17
ER  - 
%0 Journal Article
%A P. A. Tochilin
%T On the construction of a piecewise affine value function in an infinite-horizon optimal control problem
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 223-238
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a17/
%G ru
%F TIMM_2020_26_1_a17
P. A. Tochilin. On the construction of a piecewise affine value function in an infinite-horizon optimal control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 223-238. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a17/

[1] Kurzhanskii A.B., “Printsip sravneniya dlya uravneniya tipa Gamiltona - Yakobi v teorii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:1 (2006), 173–183 | Zbl

[2] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes, Birkhauser, Basel, 2014, 445 pp. | MR | Zbl

[3] Habets L.C.G.J.M., Collins P.J., van Schuppen J.H., “Reachability and control synthesis for piecewise-affine hybrid systems on simplices”, IEEE Trans Automatic Control, 51:6 (2006), 938–948 | DOI | MR | Zbl

[4] Girard A., Martin S., “Synthesis of constrained nonlinear systems using hybridization and robust controllers on simplices”, IEEE Trans Automatic Control, 57:4 (2012), 1046–1051 | DOI | MR | Zbl

[5] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 2008, 570 pp. | MR | Zbl

[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, Izhevsk, 2003, 336 pp. | MR

[7] Fleming W.H., Soner H.M., Controlled Markov processes and viscosity solutions, Springer, N Y, 2006, 429 pp. | MR | Zbl

[8] Kurzhanskii A.B., Tochilin P.A., “Slabo invariantnye mnozhestva gibridnykh sistem”, Differents. uravneniya, 44:11 (2008), 1523–1533 | MR | Zbl

[9] Asarin E., Dang T., Girard A., “Hybridization methods for the analysis of nonlinear systems”, Acta Informatica, 43:7 (2007), 451–476 | DOI | MR | Zbl

[10] Tochilin P.A., “O postroenii nevypuklykh approksimatsii mnozhestv dostizhimosti kusochno-lineinoi sistemy”, Differents. uravneniya, 51:11 (2015), 1503–1515 | DOI | MR | Zbl

[11] Mayantsev K.S., Tochilin P.A., “The feedback control problem for switched system with uncertainties”, IFAC Proceedings Volumes, 50:1 (2017), 2187–2192 | DOI

[12] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 225 pp. | MR

[13] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp. | MR