Differential Inclusions in a Banach Space with Composite Right-Hand Side
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 212-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A differential inclusion whose right-hand side is the sum of two multivalued mappings is considered in a separable Banach space. The values of one mapping are closed, bounded, and not necessarily convex sets. This mapping is measurable in the time variable, is Lipschitz in the phase variable, and satisfies the traditional growth condition. The values of the second multivalued mapping are closed, convex, and not necessarily bounded sets. This mapping is assumed to have a closed graph in the phase variable. The remaining assumptions concern the intersection of the second mapping and the multivalued mapping defined by the growth conditions. We suppose that the intersection of the multivalued mappings has a measurable selection and possesses certain compactness properties. An existence theorem is proved for solutions of such inclusions. The proof is based on a theorem proved by the author on continuous selections passing through fixed points of multivalued mappings depending on a parameter with closed nonconvex decomposable values and on Ky Fan's famous fixed-point theorem. The obtained results are new.
Mots-clés : decomposable set
Keywords: fixed point, continuous selection, weak norm, Aumann integral.
@article{TIMM_2020_26_1_a16,
     author = {A. A. Tolstonogov},
     title = {Differential {Inclusions} in a {Banach} {Space} with {Composite} {Right-Hand} {Side}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {212--222},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a16/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Differential Inclusions in a Banach Space with Composite Right-Hand Side
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 212
EP  - 222
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a16/
LA  - ru
ID  - TIMM_2020_26_1_a16
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Differential Inclusions in a Banach Space with Composite Right-Hand Side
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 212-222
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a16/
%G ru
%F TIMM_2020_26_1_a16
A. A. Tolstonogov. Differential Inclusions in a Banach Space with Composite Right-Hand Side. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 212-222. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a16/

[1] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Springer, Netherlands, 1976, 352 pp. | MR

[2] Tolstonogov A.A., “Suschestvovanie i relaksatsiya reshenii differentsialnykh vklyuchenii s neogranichennoi pravoi chastyu v banakhovom prostranstve”, Sib. mat. zhurn., 58:4(344) (2017), 937–953 | DOI | MR | Zbl

[3] Tolstonogov A., Differential inclusions in Banach space, Kluwer Acad. Publ., Dordrecht; Boston; London, 2000, 302 pp. | MR | Zbl

[4] Himmelberg C.J., “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | DOI | MR | Zbl

[5] Alexiewicz A., “Linear functionals on Denjoy-integrable functions”, Colloquium Math., 1:4 (1948), 289–293 | DOI | MR | Zbl

[6] Tolstonogov A.A., “O nekotorykh svoistvakh prostranstva pravilnykh funktsii”, Mat. zametki, 35:6 (1984), 803–812 | MR | Zbl

[7] Tolstonogov A.A., Tolstonogov D.A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values. Existence theorems”, Set-valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[8] Tolstonogov A.A., “$L_p$-nepreryvnye selektory nepodvizhnykh tochek mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami. I. Teoremy suschestvovaniya”, Sib. mat. zhurn., 40:3 (1999), 695–709 | MR | Zbl

[9] Fan Ky., “Fixed point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad Sci. USA, 38:3 (1952), 121–126 | DOI | MR | Zbl