Voir la notice du chapitre de livre
Mots-clés : probabilistic solution, route selection
@article{TIMM_2020_26_1_a15,
author = {G. A. Timofeeva},
title = {Probabilistic solutions of conditional optimization problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {198--211},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a15/}
}
G. A. Timofeeva. Probabilistic solutions of conditional optimization problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 198-211. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a15/
[1] Prekopa A., Stochastic programming, Mathematics and Its Applications, 324, Springer, Dordrecht, 1995, 600 pp. | DOI | MR
[2] Popova O.A., “Zadacha lineinogo programmirovaniya so sluchainymi vkhodnymi dannymi”, Vestn. SGUTU, 41:2 (2013), 19–23
[3] Popova O.A., “Optimization problems with random data”, Zhurn. Sib. federal. un-ta. Ser.: Matematika i fizika, 6:4 (2013), 506–515 | MR
[4] Calafiore G., Campi M.C., “Uncertain convex programs: randomized solutions and confidence levels”, Math. Program. Ser. A, 102 (2005), 25–46 | DOI | MR | Zbl
[5] Bonami P., Lejeune M.A., “An exact solution approach for portfolio optimization problems under stochastic and integer constraints”, Stochastic Programming E-print Series (SPEPS), 2007, no. 1, 2936317-2 | DOI | MR
[6] Kuo-Chen Hung, Shu-Cheng Lin, Chun-Hsiao Chu, “Note on solving probabilistic programming problems involving multi-choice parameters”, J. Interdisciplinary Math., 18:5 (2015), 617–627 | DOI
[7] Podinovskii V.V., “Potentsialnaya optimalnost v mnogokriterialnoi optimizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 54:3 (2014), 415–424 | DOI
[8] Zhukovskii V.I., Molostvov V.S., Mnogokriterialnaya optimizatsiya sistem v usloviyakh nepolnoi informatsii, MNIIPU, M., 1990, 112 pp.
[9] Kurzhanskii A.B., Komarov Yu.A., “Gamiltonov formalizm dlya zadachi upravleniya dvizheniem s vektornym kriteriem”, Dokl. AN, 480:4 (2018), 408–412 | DOI
[10] Timofeeva G., Martynenko A., Zavalishchin D., “Probabilistic modeling of passengers and carriers preferences via bicriterial approach”, 17th IFAC Workshop on Control Applications of Optimization (CAO 2018), IFAC-PapersOnLine, 51, no. 32, 2018, 496–498 | DOI
[11] Powell W.B., “A unified framework for stochastic optimization”, European J. Oper. Research, 275:3 (2019), 795–821 | DOI | MR | Zbl
[12] Polyak B.T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 383 pp.
[13] Robbins H., Monro S., “A stochastic approximation method”, The Annals Math. Stat., 22:3 (1951), 400–407 | DOI | MR | Zbl
[14] Ermoliev Y., “Stochastic quasigradient methods and their application to system optimization”, Stochastics. Ser. B, 9:1–2 (1983), 1–36 | DOI | MR | Zbl
[15] Bertsekas D.P., Tsitsiklis J.N., “Gradient convergence in gradient methods with errors”, SIAM J. Optim., 10:3 (2000), 627–642 | DOI | MR | Zbl
[16] Rosasco L., Villa S., Vu B.C., “Convergence of stochastic proximal gradient algorithm”, Appl. Math. Optim., 18 (2019), 1–27 | DOI
[17] Lai T.L., Xing H., Chen Z., “Mean-variance portfolio optimization when means and covariances are unknown”, Annals Appl. Stat., 5:2A (2011), 798–823 | DOI | MR | Zbl
[18] Markowitz H.M., Portfolio selection: efficient diversification of investments, 2nd edt., B. Blackwell, Cambridge, Mass., 1991, 384 pp. | MR
[19] Kan Yu.S., Kibzun A.I., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami, Fizmatlit, Moskva, 2009, 372 pp.
[20] Lejeune M.A., Prekopa A., “Relaxations for probabilistically constrained stochastic programming problems: review and extensions”, Annals Oper. Research, 2018 | DOI
[21] Dentcheva D., Martinez G., “Regularization methods for optimization problems with probabilistic constraints”, Math. Programming, 138:1 (2013), 223–251 | DOI | MR | Zbl
[22] Genz A., “Numerical computation of multivariate normal probabilities”, J. Comput. Graphical Stat., 1992, no. 1, 141–149 | MR
[23] Henrion R., Moller A., “A gradient formula for linear chance constraints under Gaussian distribution”, Math. Oper. Research, 37 (2012), 475–488 | DOI | MR | Zbl
[24] Materon Zh., Sluchainye mnozhestva i integralnaya geometriya, Mir, M., 1978, 318 pp.
[25] Varian H.R., Intermediate. Microeconomics. A Modern approach, 8th edt., University of California at Berkeley, N Y, 2009, 739 pp.
[26] Dixit A.K., Stiglitz J.E., “Monopolistic competition and optimum product diversity”, The American Economic Review, 67:3 (1977), 297–308
[27] Anderson S.P., De Palma A., Thisse J.-F., “Demand for differentiated products, discrete choice models, and the characteristics approach”, Review of Economic Studies, 56:1 (1989), 21-35 | DOI | MR | Zbl
[28] Timofeeva G., “Investigation of mathematical model of passenger preferences”, AIP Conf. Proc., 2172 (2019), 080001 | DOI
[29] Kan Yu.S., Tuzov N.V., “Minimizatsiya kvantili normalnogo raspredeleniya bilineinoi funktsii poter”, Avtomatika i telemekhanika, 1998, no. 11, 82–92 | Zbl
[30] Kats I.Ya., Timofeeva G.A., “Bikriterialnaya zadacha stokhasticheskoi optimizatsii”, Avtomatika i telemekhanika, 1997, no. 3, 116–123 | Zbl