@article{TIMM_2020_26_1_a13,
author = {N. G. Novoselova and N. N. Subbotina},
title = {Construction of the viability set in a problem of chemotherapy of a malignant tumor growing according to the {Gompertz} law},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {173--181},
year = {2020},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a13/}
}
TY - JOUR AU - N. G. Novoselova AU - N. N. Subbotina TI - Construction of the viability set in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law JO - Trudy Instituta matematiki i mehaniki PY - 2020 SP - 173 EP - 181 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a13/ LA - ru ID - TIMM_2020_26_1_a13 ER -
%0 Journal Article %A N. G. Novoselova %A N. N. Subbotina %T Construction of the viability set in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law %J Trudy Instituta matematiki i mehaniki %D 2020 %P 173-181 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a13/ %G ru %F TIMM_2020_26_1_a13
N. G. Novoselova; N. N. Subbotina. Construction of the viability set in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 173-181. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a13/
[1] Bellman R., Dynamic programming, Princeton University Press, Princeton, 1957, 340 pp. | MR | Zbl
[2] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 392 pp. | MR
[3] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.
[4] Aizeks R., Differentsialnye igry, Mir, M., 1967, 489 pp.
[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[6] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp.
[7] Nikolskii M.S., “Ob alternirovannom integrale L.S. Pontryagina”, Mat. sb., 116:1 (1981), 136–144 | MR
[8] Kurzhanskii A.B., Melnikov N.B., “O zadache sinteza upravlenii: alternirovannyi integral Pontryagina i uravnenie Gamiltona - Yakobi”, Mat. sb., 191:6 (2000), 69–100 | DOI
[9] Ushakov V.N., Ukhobotov V.I., Lipin A.E., “Ob odnom dopolnenii k opredeleniyu stabilnogo mosta i approksimiruyuschei sistemy mnozhestv v differentsialnykh igrakh”, Tr. MIAN, 304 (2019), 285–297 | DOI | Zbl
[10] Patsko V., Kumkov S., Turova V., “Pursuit-evasion games”, Handbook of Dynamic Game Theoryeds. . T. Basar, G. Zaccour, Springer, Cham, 2018, 1–87 | DOI
[11] Bratus A.S.,Chumerina E.S., “Cintez optimalnogo upravleniya v zadache vybora lekarstvennogo vozdeistviya na rastuschuyu opukhol”, Zhurn. vychisl. matematiki i mat. fiziki, 48:6 (2008), 946–966 | MR | Zbl
[12] Subbotina N.N. , Novoselova N.G., “The value function in a problem of chemotherapy of a malignant tumor growing according to the Gompertz law”, IFAC-PapersOnLine, 51:32 (2018), 855–860 | DOI
[13] Subbotina N. N., Kolpakova E. A.,Tokmantsev T. B.,Shagalova L. G., Metod kharakteristik dlya uravneniya Gamiltona - Yakobi - Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.
[14] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issled., M.; Izhevsk, 2003, 336 pp.