Estimation of states of multistage stochastic inclusions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 12-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Multistage stochastic inclusions of the form $z_k\in H_k(z_{k-1} ,\omega)$, where $z_k\in Z_k=X_kY_k$ and $k\in1:N$, are considered. We regard the projection of $z_k$ to $X_k$ as an unobservable state and the projection of $z_k$ to $Y_k$ as an observable state. The element $\omega$ belongs to a probability space $(\Omega,\mathcal {F},P)$, and the multifunction $H_k(z,\cdot)$ is measurable with respect to a $\sigma$-algebra $\mathcal {G}_k$. These $\sigma$-algebras are supposed to be independent for different $k$, and their union $\mathcal {F}_k=\sigma\big(\bigcup_{i\in1:k}\mathcal {G}_i\big)\subset\mathcal {F}$ characterizes an increasing accumulation of information. We consider three ways of estimating the unobservable states based on different methods of forming the set of transition probabilities. It is shown that these ways result in different sets of conditional distributions for the unobservable states of the process. The question of sufficient conditions for the coincidence of the considered filtering schemes is partially studied, and it is proved that, for finite state spaces, these schemes coincide in the case of a nonatomic probability space. A new class of Lebesgue selections is introduced for arbitrary multifunctions and is shown to be nonempty, in particular, for measurable simple rectangles on a nonatomic space. It is proved that the filtering schemes also coincide in the Lebesgue class for simple inclusions and selections defined on a nonatomic probability space.
Mots-clés : estimation, conditional distributions.
Keywords: filtering, stochastic inclusions, selections, transition probabilities
@article{TIMM_2020_26_1_a1,
     author = {B. I. Anan'ev},
     title = {Estimation of states of multistage stochastic inclusions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--26},
     year = {2020},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a1/}
}
TY  - JOUR
AU  - B. I. Anan'ev
TI  - Estimation of states of multistage stochastic inclusions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2020
SP  - 12
EP  - 26
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a1/
LA  - ru
ID  - TIMM_2020_26_1_a1
ER  - 
%0 Journal Article
%A B. I. Anan'ev
%T Estimation of states of multistage stochastic inclusions
%J Trudy Instituta matematiki i mehaniki
%D 2020
%P 12-26
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a1/
%G ru
%F TIMM_2020_26_1_a1
B. I. Anan'ev. Estimation of states of multistage stochastic inclusions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 26 (2020) no. 1, pp. 12-26. http://geodesic.mathdoc.fr/item/TIMM_2020_26_1_a1/

[1] Ananyev B.I., “One problem of statistically uncertain estimation”, Proc. of Intern. Conf. SCDG2019, Short paper (Yekaterinburg, 16-20 Sept. 2019), IMM UB of RAS, Yekaterinburg, 2019, 375–379

[2] Ananev B.I., Anikin S.A., “Zadacha vosstanovleniya vkhodnykh vozdeistvii pri kommunikatsionnykh ogranicheniyakh”, Avtomatika i telemekhanika, 2009, no. 7, 73–84 | Zbl

[3] Ananev B.I., “O korrektsii dvizheniya pri kommunikatsionnykh ogranicheniyakh”, Avtomatika i telemekhanika, 2010, no. 3, 3–15 | Zbl

[4] Kats I.Ya., Kurzhanskii A.B., “Minimaksnoe otsenivanie v mnogoshagovykh sistemakh”, Dokl. AN SSSR, 221:3 (1975), 535–538 | MR | Zbl

[5] Anan'ev B.I., “Minimax estimation of statistically uncertain systems under the choice of a feedback parameter”, J. Math. Systems, Estimation, and Control, 5:2 (1995), 1–17 | MR

[6] Lebedev M.V., Semenikhin K.V., “Minimaksnaya filtratsiya v stokhasticheskoi differentsialnoi sisteme s nestatsionarnymi vozmuscheniyami neizvestnoi intensivnosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 45–56 | MR | Zbl

[7] Nguyen Hung T. et al, Computing statistics under interval and fuzzy uncertainty, Springer-Verlag, Berlin; Heidelberg, 2012, 432 pp. | DOI | MR | Zbl

[8] Kisielewicz M., “Relationship between attainable sets of functional and set-valued functional stochastic inclusions”, Stochastic Anal. Appl., 34:6 (2016), 1094–1110 | DOI | MR | Zbl

[9] Raol J.R., Gopalratnam G., Twala B., Nonlinear filtering. Concepts and engineering applications, CRC Press, Taylor Francis Group, Boca Raton, 2017, 556 pp. | MR | Zbl

[10] Miranda E., Couso I., Gil P., “Approximations of upper and lower probabilities by measurable selections”, Information Sciences, 180:8 (2010), 1407–1417 | DOI | MR | Zbl

[11] Bertsekas D., Shriv S., Stokhasticheskoe optimalnoe upravlenie, Nauka, M., 1985, 279 pp. | MR

[12] Shiryaev A.N., Veroyatnost-1, v 2 kn., v. 1, MTsNMO, M., 2004, 520 pp.

[13] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 431 pp.

[14] Borisovich Yu.G. i dr., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 215 pp.

[15] Nguyen Hung T., “On random sets and belief functions”, J. Math. Anal. Appl., 65:3 (1978), 531–542 | DOI | MR | Zbl

[16] Himmelberg C., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl

[17] Miranda E., Couso I., Gil P., “Random intervals as a model for imprecise information”, Fuzzy Sets and Systems, 154 (2005), 386–412 | DOI | MR | Zbl