On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 99-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This study continues the author's previous papers where a refined description of the chief factors of a parabolic maximal subgroup involved in its unipotent radical was obtained for all (normal and twisted) finite simple groups of Lie type except for the groups $^2F_4(2^{2n+1})$ and $B_l(2^n)$. In present paper, such a description is given for the group $^2F_4(2^{2n+1})$. We prove a theorem in which, for every parabolic maximal subgroup of $^2F_4(2^{2n+1})$, a fragment of the chief series involved in the unipotent radical of this subgroup is given. Generators of the corresponding chief factors are presented in a table.
Keywords: finite simple group, group of Lie type, parabolic maximal subgroup, chief factor, strong version of the Sims conjecture.
Mots-clés : unipotent radical
@article{TIMM_2019_25_4_a9,
     author = {V. V. Korableva},
     title = {On {Chief} {Factors} of {Parabolic} {Maximal} {Subgroups} of the {Group} $^2F_4(2^{2n+1})$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--106},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/}
}
TY  - JOUR
AU  - V. V. Korableva
TI  - On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 99
EP  - 106
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/
LA  - ru
ID  - TIMM_2019_25_4_a9
ER  - 
%0 Journal Article
%A V. V. Korableva
%T On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 99-106
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/
%G ru
%F TIMM_2019_25_4_a9
V. V. Korableva. On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 99-106. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/

[1] Burbaki H., Gruppy i algebry Li, Gl. VII-VIII, Mir, M., 1978, 342 pp. | MR

[2] Vasilev A.V., “Minimalnye podstanovochnye predstavleniya konechnykh prostykh isklyuchitelnykh grupp skruchennogo tipa”, Algebra i logika, 37:1 (1998), 17–35 | MR | Zbl

[3] Korableva V.V., “Parabolicheskie podstanovochnye predstavleniya grupp ${}^2F_4(q)$ and ${}^3D_4(q^3)$”, Mat. zametki, 67:1 (2000), 69–76 | DOI | MR | Zbl

[4] Korableva V.V., “O glavnykh faktorakh parabolicheskikh maksimalnykh podgrupp konechnykh prostykh grupp normalnogo lieva tipa”, Sib. mat. zhurn., 55:4 (2014), 764–782 | MR | Zbl

[5] Korableva V.V., “O glavnykh faktorakh parabolicheskikh maksimalnykh podgrupp gruppy ${}^2E_6(q^2)$”, Algebra i matematicheskaya logika, teoriya i prilozheniya, tez. Mezhdunar. konf. Kazan, 2014, 82–83

[6] Korableva V.V., “O glavnykh faktorakh parabolicheskikh maksimalnykh podgrupp gruppy ${}^3D_4(q^3)$”, Maltsevskie chteniya, tez. Mezhdunar. konf., posvyasch. 75-letiyu Yu. L. Ershova, Novosibirsk, 2015, 106

[7] Korableva V.V., “O glavnykh faktorakh parabolicheskikh maksimalnykh podgrupp skruchennykh klassicheskikh grupp”, Sib. mat. zhurn., 56:5 (2015), 1100–1110 | DOI | MR | Zbl

[8] Korableva V.V., “O glavnykh faktorakh parabolicheskikh maksimalnykh podgrupp spetsialnykh konechnykh prostykh grupp isklyuchitelnogo lieva tipa”, Sib. mat. zhurn., 58:6 (2017), 1332–1340 | DOI | MR | Zbl

[9] Azad H., Barry M., Seitz G., “On the structure of parabolic subgroup”, Com. in Algebra, 18:2 (1990), 551–562 | DOI | MR | Zbl

[10] Carter R.W., Simple groups of Lie type, John Wiley and Sons, London, 1972, 332 pp. | MR | Zbl

[11] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[12] Fong P., Seitz G., “Groups with (B,N)-pair of rank 2, II”, Invent. Math., 24 (1974), 191–239 | DOI | MR | Zbl

[13] Kondrat'ev A.S., Trofimov V.I., “Vertex stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture”, Proc. Conf. “Groups St Andrews 2017 in Birmingham”, London Math. Soc. Note Ser., 455, Cambridge Univ. Press, Cambridge, 2019, 419–426 | MR

[14] Malle G., “The maximal subgroups of ${}^2F_4(q^2)$”, J. Algebra, 139 (1991), 52–69 | DOI | MR | Zbl

[15] Ree R., “A family of simple groups associated with simple Lie algebra type $F_4$”, Am. J. Math., 83 (1961), 401–420 | DOI | MR | Zbl

[16] Shinoda K., “A characterization of odd order extensions of the Ree groups ${}^2F_4(q)$”, J. Fac. Sci. Univ., 22 (1975), 79–102 | MR | Zbl

[17] Tits J., “Algebraic and abstract simple groups”, Ann. of Math., 80 (1964), 313–329 | DOI | MR | Zbl