On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 99-106
Voir la notice de l'article provenant de la source Math-Net.Ru
This study continues the author's previous papers where a refined description of the chief factors of a parabolic maximal subgroup involved in its unipotent radical was obtained for all (normal and twisted) finite simple groups of Lie type except for the groups $^2F_4(2^{2n+1})$ and $B_l(2^n)$. In present paper, such a description is given for the group $^2F_4(2^{2n+1})$. We prove a theorem in which, for every parabolic maximal subgroup of $^2F_4(2^{2n+1})$, a fragment of the chief series involved in the unipotent radical of this subgroup is given. Generators of the corresponding chief factors are presented in a table.
Keywords:
finite simple group, group of Lie type, parabolic maximal subgroup, chief factor, strong version of the Sims conjecture.
Mots-clés : unipotent radical
Mots-clés : unipotent radical
@article{TIMM_2019_25_4_a9,
author = {V. V. Korableva},
title = {On {Chief} {Factors} of {Parabolic} {Maximal} {Subgroups} of the {Group} $^2F_4(2^{2n+1})$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {99--106},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/}
}
TY - JOUR
AU - V. V. Korableva
TI - On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$
JO - Trudy Instituta matematiki i mehaniki
PY - 2019
SP - 99
EP - 106
VL - 25
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/
LA - ru
ID - TIMM_2019_25_4_a9
ER -
V. V. Korableva. On Chief Factors of Parabolic Maximal Subgroups of the Group $^2F_4(2^{2n+1})$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 99-106. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a9/