On primitive permutation groups with the stabilizer of two points normal in the stabilizer of one of them: The case when the socle is a power of a group $E_8(q)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 88-98
Voir la notice de l'article provenant de la source Math-Net.Ru
Assume that $G$ is a primitive permutation group on a finite set $X$, $x\in X\setminus\{x\}$, and $G_{x, y}\trianglelefteq G_x$. P. Cameron raised the question about the validity of the equality $G_{x, y} = 1$ in this case. The author proved earlier that, if the socle of $G$ is not a power of a group isomorphic to $E_8(q)$ for a prime power $q$, then $G_{x, y}=1$. In the present paper, we consider the case where the socle of $G$ is a power of a group isomorphic to $E_8(q)$. Together with the previous result, we establish the following two statements. 1. Let $G$ be an almost simple primitive permutation group on a finite set $X$. Assume that, if the socle of $G$ is isomorphic to $E_8(q)$, then $G_x$ for $x \in X$ is not the Borovik subgroup of $G$. Then the answer to Cameron's question for such primitive permutation groups is affirmative. 2. Let $G$ be a primitive permutation group on a finite set $X$ with the property $G\leq H\mathrm{ wr } S_m$. Assume that, if the socle of $H$ is isomorphic to $E_8(q)$, then the stabilizer of a point in the group $H$ is not the Borovik subgroup of $H$. Then the answer to Cameron's question for such primitive permutation groups is also affirmative.
Mots-clés :
primitive permutation group
Keywords: regular suborbit.
Keywords: regular suborbit.
@article{TIMM_2019_25_4_a8,
author = {A. V. Konygin},
title = {On primitive permutation groups with the stabilizer of two points normal in the stabilizer of one of them: {The} case when the socle is a power of a group $E_8(q)$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {88--98},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a8/}
}
TY - JOUR AU - A. V. Konygin TI - On primitive permutation groups with the stabilizer of two points normal in the stabilizer of one of them: The case when the socle is a power of a group $E_8(q)$ JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 88 EP - 98 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a8/ LA - ru ID - TIMM_2019_25_4_a8 ER -
%0 Journal Article %A A. V. Konygin %T On primitive permutation groups with the stabilizer of two points normal in the stabilizer of one of them: The case when the socle is a power of a group $E_8(q)$ %J Trudy Instituta matematiki i mehaniki %D 2019 %P 88-98 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a8/ %G ru %F TIMM_2019_25_4_a8
A. V. Konygin. On primitive permutation groups with the stabilizer of two points normal in the stabilizer of one of them: The case when the socle is a power of a group $E_8(q)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 88-98. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a8/