Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of partitioning a set of $N$ points in $d$-dimensional Euclidean space into two clusters minimizing the sum of the squared distances between each element and the center of the cluster to which it belongs. The center of the first cluster is its centroid (the geometric center). The center of the second cluster should be chosen among the points of the input set. We analyze the variant of the problem with given sizes (cardinalities) of the clusters; the sum of the sizes equals the cardinality of the input set. We prove that the problem is strongly NP-hard and there is no fully polynomial-time approximation scheme for it.
Keywords:
Euclidean space, clustering, quadratic variation, center, median, strong NP-hardness, nonexistence of FPTAS, approximation-preserving reduction.
Mots-clés : 2-partition, centroid
Mots-clés : 2-partition, centroid
@article{TIMM_2019_25_4_a6,
author = {A. V. Kel'manov and A. V. Pyatkin and V. I. Khandeev},
title = {Quadratic {Euclidean} {1-Mean} and {1-Median} {2-Clustering} {Problem} with {Constraints} on the {Size} of the {Clusters:} {Complexity} and {Approximability}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {69--78},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/}
}
TY - JOUR AU - A. V. Kel'manov AU - A. V. Pyatkin AU - V. I. Khandeev TI - Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 69 EP - 78 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/ LA - ru ID - TIMM_2019_25_4_a6 ER -
%0 Journal Article %A A. V. Kel'manov %A A. V. Pyatkin %A V. I. Khandeev %T Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability %J Trudy Instituta matematiki i mehaniki %D 2019 %P 69-78 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/ %G ru %F TIMM_2019_25_4_a6
A. V. Kel'manov; A. V. Pyatkin; V. I. Khandeev. Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 69-78. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/