Mots-clés : 2-partition, centroid
@article{TIMM_2019_25_4_a6,
author = {A. V. Kel'manov and A. V. Pyatkin and V. I. Khandeev},
title = {Quadratic {Euclidean} {1-Mean} and {1-Median} {2-Clustering} {Problem} with {Constraints} on the {Size} of the {Clusters:} {Complexity} and {Approximability}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {69--78},
year = {2019},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/}
}
TY - JOUR AU - A. V. Kel'manov AU - A. V. Pyatkin AU - V. I. Khandeev TI - Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 69 EP - 78 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/ LA - ru ID - TIMM_2019_25_4_a6 ER -
%0 Journal Article %A A. V. Kel'manov %A A. V. Pyatkin %A V. I. Khandeev %T Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability %J Trudy Instituta matematiki i mehaniki %D 2019 %P 69-78 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/ %G ru %F TIMM_2019_25_4_a6
A. V. Kel'manov; A. V. Pyatkin; V. I. Khandeev. Quadratic Euclidean 1-Mean and 1-Median 2-Clustering Problem with Constraints on the Size of the Clusters: Complexity and Approximability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 69-78. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a6/
[1] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI | Zbl
[2] Kariv O., Hakimi S.L., “An algorithmic approach to network location problems. Pt. II: The $p$-Medians”, SIAM J. Appl. Math., 37:3 (1979), 513–538 | DOI | MR | Zbl
[3] Gimadi E.Kh., Kelmanov A.V., Kelmanova M.A., Khamidullin S.A., “Aposteriornoe obnaruzhenie v chislovoi posledovatelnosti kvaziperiodicheskogo fragmenta pri zadannom chisle povtorov”, Sib. zhurn. industr. matematiki, 9:1(25) (2006), 55–74 | MR | Zbl
[4] Gimadi E.Kh., Kel'manov A.V., Kel'manova M.A., Khamidullin S.A., “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognition and Image Anal., 18:1 (2008), 30–42 | DOI
[5] Baburin A.E., Gimadi E.Kh., Glebov N.I., Pyatkin A.V., “Zadacha otyskaniya podmnozhestva vektorov s maksimalnym summarnym vesom”, Diskretnyi analiz i issledovanie operatsii. Ser. 2, 14:1 (2007), 32–42 | Zbl
[6] James G., Witten D., Hastie T., Tibshirani R., An introduction to statistical learning, Springer, Science+Business Media, LLC, N Y, 2013, 426 pp. | MR | Zbl
[7] Bishop C.M., Pattern recognition and machine learning, Springer, Science+Business Media, LLC, N Y, 2006, 738 pp. | MR | Zbl
[8] Shirkhorshidi A.S., Aghabozorgi S, Wah T.Y., Herawan T., “Big data clustering: A review”, Computational Science and Its Applications (ICCSA 2014), Proc., Lecture Notes in Computer Science, 8583, eds. B. Murgante et al., 2014, 707–720 | DOI
[9] Aggarwal C.C., Data mining: The Textbook, Springer, International Publishing, N Y etc., 2015, 734 pp. | MR | Zbl
[10] Edwards A.W.F., Cavalli-Sforza L.L., “A method for cluster analysis”, Biometrics, 21 (1965), 362–375 | DOI
[11] Garey M.R., Johnson D.S., Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, 1979, 338 pp. | MR | Zbl
[12] Papadimitriou C.H., Computational complexity, Addison-Wesley, N Y, 1994, 523 pp. | MR | Zbl
[13] Vazirani V.V., Approximation algorithms, Springer-Verlag, Berlin; Heidelberg; N Y, 2001, 380 pp. | MR
[14] Dolgushev A.V., Kelmanov A.V., “Priblizhennyi algoritm resheniya odnoi zadachi klasternogo analiza”, Diskretnyi analiz i issledovanie operatsii, 18:2 (2011), 29–40 | MR | Zbl
[15] Dolgushev A.V., Kelmanov A.V., Shenmaier V.V., “Priblizhennaya polinomialnaya skhema dlya odnoi zadachi klasternogo analiza”, Intellektualizatsiya obrabotki informatsii, 9-ya mezhdunar. konf., cb. dokl. (Resp. Chernogoriya, g. Budva, 16-22 sentyabrya 2012 g.), Torus Press, M., 2012, 242–244
[16] Kelmanov A.V., Khandeev V.I., “Randomizirovannyi algoritm dlya odnoi zadachi dvukhklasternogo razbieniya mnozhestva vektorov”, Zhurn. vychisl. matematiki i mat. fiziki, 55:2 (2015), 335–344 | DOI | Zbl
[17] Kel'manov A.V., Motkova A.V., Shenmaier V.V., “An approximation scheme for a weighted two-cluster partition problem”, Analysis of Images, Social Networks and Texts - 6th Internat. Conf. (AIST 2017), Revised Selected Papers, Lecture Notes in Computer Science, 10716, 2018, 323–333 | DOI