On Sylow 2-subgroups of Shunkov groups saturated with the groups $L_3(2^m)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 275-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A group $G$ is saturated with groups from a set of groups $X$ if any finite subgroup of $G$ is contained in a subgroup of $G$ isomorphic to some group from $X$. If all finite-order elements of a group $G$ are contained in a periodic subgroup of $G$, then this subgroup is called the periodic part of $G$. A group $G$ is called a Shunkov group if, for any finite subgroup $H$ of $G$, any two conjugate elements of prime order in the quotient group $N_G(H)/h$ generate a finite group. A Shunkov group may have no periodic part. We establish the structure of a Sylow 2-subgroup of a Shunkov group saturated with projective special linear groups of degree 3 over finite fields of even characteristic in the case when the Shunkov group has no periodic part.
Keywords: group saturated with a given set of groups, Shunkov group, periodic part of a group.
@article{TIMM_2019_25_4_a28,
     author = {A. A. Shlepkin},
     title = {On {Sylow} 2-subgroups of {Shunkov} groups saturated with the groups $L_3(2^m)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {275--282},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a28/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On Sylow 2-subgroups of Shunkov groups saturated with the groups $L_3(2^m)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 275
EP  - 282
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a28/
LA  - ru
ID  - TIMM_2019_25_4_a28
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On Sylow 2-subgroups of Shunkov groups saturated with the groups $L_3(2^m)$
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 275-282
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a28/
%G ru
%F TIMM_2019_25_4_a28
A. A. Shlepkin. On Sylow 2-subgroups of Shunkov groups saturated with the groups $L_3(2^m)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 275-282. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a28/

[1] Ditsman A.P., “O tsentre $p$-grupp”, Tr. seminara po teorii grupp, M., 1938, 30–34

[2] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR

[3] Kondratev A.S., Gruppy i algebry Li, Izd-vo UrO RAN, Ekaterinburg, 2009, 309 pp.

[4] Lytkina D.V., Mazurov V.D., “Periodicheskie gruppy, nasyschennye gruppami $L_3(2^m)$”, Algebra i logika, 46:5 (2007), 606–626 | DOI | MR | Zbl

[5] Senashov V.I., Shunkov V.P., Gruppy s usloviyami konechnosti, Izd-vo SO RAN, Novosibirsk, 2001, 201 pp. | MR

[6] Cherep A.A., “O mnozhestve elementov konechnogo poryadka v biprimitivno konechnoi gruppe”, Algebra i logika, 26:4 (1987), 518–521 | MR

[7] Shlepkin A.A., “Gruppy Shunkova, nasyschennye lineinymi i unitarnymi gruppami stepeni 3 nad polyami nechetnykh poryadkov”, Sib. elektr. mat. izv., 13 (2016), 341–351 | DOI | Zbl

[8] Shlepkin A.K., “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Tretya mezhdunar. konf. po algebre, cb. tez. (23-28 avg. 1993), Krasnoyarsk, 1993, 363

[9] Shlepkin A.K., “O sopryazhenno biprimitivno konechnykh gruppakh s usloviem primarnoi minimalnosti”, Algebra i logika, 37:2 (1998), 224–245 | MR | Zbl

[10] Shlepkin A.K., “O sopryazhenno biprimitivno konechnykh gruppakh s usloviem primarnoi minimalnosti”, Algebra i logika, 22 (1983), 226–231 | MR | Zbl