Mathematical Modeling of Investments in an Imperfect Capital Market
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 265-274 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of modeling the investments in an imperfect capital market in which the interest on loans significantly exceeds the interest on deposits. To determine the cash flow deflator, we propose to use the Cantor–Lippman model in which the investment environment is described by a pool of stationary and replicable projects. The pool of investment projects defines the investment function, which is built as the pointwise maximum of Laplace transforms of the cash flows of investment projects. The Cantor–Lippman model of investment in an imperfect capital market allows us to build a Bellman function, which can be used to assess the financial state of the investor. We study the properties of the Bellman operator in the problem of an optimal investment strategy. It is shown that the minimum positive root of the investment function should be used as a cash flow deflator. We also study a dynamic control system describing the investment process. Modes of balanced growth are built. The Neumann growth rate and the Neumann equilibrium states are determined. A weak turnpike theorem is proved.
Keywords: investments, Cantor–Lippman model, mathematical modeling of economics, NPV, Bellman operator, investment polynomial, linear programming problem.
Mots-clés : IRR
@article{TIMM_2019_25_4_a27,
     author = {A. A. Shananin},
     title = {Mathematical {Modeling} of {Investments} in an {Imperfect} {Capital} {Market}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {265--274},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a27/}
}
TY  - JOUR
AU  - A. A. Shananin
TI  - Mathematical Modeling of Investments in an Imperfect Capital Market
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 265
EP  - 274
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a27/
LA  - ru
ID  - TIMM_2019_25_4_a27
ER  - 
%0 Journal Article
%A A. A. Shananin
%T Mathematical Modeling of Investments in an Imperfect Capital Market
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 265-274
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a27/
%G ru
%F TIMM_2019_25_4_a27
A. A. Shananin. Mathematical Modeling of Investments in an Imperfect Capital Market. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 265-274. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a27/

[1] Fisher I., The rate of interest, Macmillan Co., New York, 1907, 442 pp.

[2] Fisher I., The theory of interest, Macmillan Co., New York, 1930, 566 pp. | Zbl

[3] Hirshleifer J., “On the theory of optimal decision”, J. Political Economy, 66:4 (1958), 229–239 | DOI

[4] Solow R.M., Capital theory and the rate of return, North Holland Press, Amsterdam totalpages 98, 1963

[5] Gale D., “On the theory of interest”, The American Math. Monthly, 80:8 (1983), 853–868 | DOI | MR

[6] Dorfman R., “The meaning of internal rates of return”, J. Finance, 36:5 (1981), 1011–1021 | DOI

[7] Cantor D.G., Lipman S.A., “Investment selection with imperfect capital markets”, Econometrica, 51:4 (1983), 1121–1144 | DOI | MR | Zbl

[8] Cantor D.G., Lipman S.A., “Optimal investment selection with a multitude of projects”, Econometrica, 63:5 (1995), 1231–1240 | DOI | Zbl

[9] Adler L., Gale D., “Arbitrate and growth rate for riskless investments in a stationary economy”, Mathematical Finance, 7:1 (1997), 73–81 | DOI | Zbl

[10] Sonin I.M., “Growth rate, internal rates of return and tunpikes in investment model”, Econ. Theory, 5:3 (1995), 383–400 | DOI | MR | Zbl

[11] Presman E.L., Sonin I.M., Growth rate, internal rates of return and financial bubbles, TsEMI RAN, M., 2000, 33 pp.

[12] Belenkii V.Z., Ekonomicheskaya dinamika: analiz investitsionnykh proektov v ramkakh lineinoi modeli Neimana - Geila, TsEMI RAN, M., 2002, 78 pp.

[13] Vaschenko M.P. Otsenka dokhodnosti investitsionnykh proektov v usloviyakh neopredelennosti, Mat. modelirovanie, 21:3 (2009), 18–30

[14] Vaschenko M.P., Shananin A.A., “Otsenka dokhodnosti pula investitsionnykh proektov v modeli optimalnogo investirovaniya v nepreryvnom vremeni”, Mat. modelirovanie, 24:3 (2012), 70–86

[15] Shananin A.A., Vashchenko M.P., Zhang Sh., “Financial bubbles existence in the Cantor-Lippman model for continuous time”, Lobachevskii J. Math., 39:7 (2018), 929–935 | DOI | MR | Zbl

[16] Rubinov A.M., Superlineinye mnogoznachnye otobrazheniya i ikh prilozheniya k ekonomicheskim zadacham, Nauka, L., 1980, 166 pp.