Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 235-248
Voir la notice de l'article provenant de la source Math-Net.Ru
The Capacitated Vehicle Routing Problem (CVRP) is a classical extremal combinatorial routing problem with numerous applications in operations research. Although the CVRP is strongly NP-hard both in the general case and in the Euclidean plane, it admits quasipolynomial- and even polynomial-time approximation schemes (QPTAS and PTAS) in Euclidean spaces of fixed dimension. At the same time, the metric setting of the problem is APX-complete even for an arbitrary fixed capacity $q\geq 3$. In this paper, we show that the classical Haimovich–Rinnooy Kan algorithm implements a PTAS and an Efficient Polynomial-Time Approximation Scheme (EPTAS) in an arbitrary metric space of fixed doubling dimension for $q=o(\log\log n)$ and for an arbitrary constant capacity, respectively.
Keywords:
Capacitated Vehicle Routing Problem (CVRP), Polynomial-Time Approximation Scheme (PTAS), metric space, doubling dimension.
@article{TIMM_2019_25_4_a24,
author = {M. Yu. Khachay and Yu. Yu. Ogorodnikov},
title = {Haimovich-Rinnooy {Kan} polynomial-time approximation scheme for the {CVRP} in metric spaces of a fixed doubling dimension},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {235--248},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a24/}
}
TY - JOUR AU - M. Yu. Khachay AU - Yu. Yu. Ogorodnikov TI - Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 235 EP - 248 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a24/ LA - ru ID - TIMM_2019_25_4_a24 ER -
%0 Journal Article %A M. Yu. Khachay %A Yu. Yu. Ogorodnikov %T Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension %J Trudy Instituta matematiki i mehaniki %D 2019 %P 235-248 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a24/ %G ru %F TIMM_2019_25_4_a24
M. Yu. Khachay; Yu. Yu. Ogorodnikov. Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 235-248. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a24/