On Limits of Vertex-Symmetric Graphs and Their Automorphisms
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 226-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using a simple but rather general method of constructing Cayley graphs with trivial vertex stabilizers, we give an example of an infinite locally finite Cayley graph (and, hence, an example of an infinite connected locally finite vertex-symmetric unimodular graph) which is isolated in the space of connected locally finite vertex-symmetric graphs. We also give examples of Cayley graphs which are not isolated in this space but are isolated from the set of connected vertex-symmetric finite graphs.
Keywords: connected locally finite vertex-symmetric graph, Cayley graph, convergence of graphs.
@article{TIMM_2019_25_4_a23,
     author = {V. I. Trofimov},
     title = {On {Limits} of {Vertex-Symmetric} {Graphs} and {Their} {Automorphisms}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--234},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - On Limits of Vertex-Symmetric Graphs and Their Automorphisms
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 226
EP  - 234
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/
LA  - ru
ID  - TIMM_2019_25_4_a23
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T On Limits of Vertex-Symmetric Graphs and Their Automorphisms
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 226-234
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/
%G ru
%F TIMM_2019_25_4_a23
V. I. Trofimov. On Limits of Vertex-Symmetric Graphs and Their Automorphisms. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 226-234. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/

[1] Grigorchuk R.I., “Stepeni rosta konechno-porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. matematicheskaya, 48:5 (1984), 939–985 | MR

[2] Trofimov V.I., “Lokalnoe stroenie grafov i polinomialnost rosta”, Podgruppovoe stroenie grupp, Izd-vo UrO RAN, Sverdlovsk, 1988, 149–152

[3] Trofimov V.I., “O deistvii primitivnykh grupp”, Algebra i logika, 28:3 (1989), 337–363 | MR | Zbl

[4] Trofimov V.I., “Gruppy avtomorfizmov grafov kak topologicheskie gruppy”, Mat. zametki, 38:3 (1985), 378–385 | MR | Zbl

[5] Brin M., “The free group of rank 2 is a limit of Thompson's group F”, Groups Geom. Dyn., 4 (2010), 433–454 | DOI | MR | Zbl

[6] Condera M., Exoo G., Jajcay R., “On the limitations of the use of solvable groups in Cayley graph cage constructions”, European J. Combin., 31 (2010), 1819–1828 | DOI | MR

[7] de Cornulier Y., Guyot L., Pitsch W., “On the isolated points in the space of groups”, J. Algebra, 307 (2007), 254–277 | DOI | MR | Zbl

[8] Frisch J., Tamuz O., “Transitive graphs uniquely determined by their local structure”, Proc. Amer. Math. Soc., 144 (2016), 1913–1918 | DOI | MR | Zbl

[9] Gromov M., “Groups of polynomial growth and expanding maps”, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR

[10] Kropholler P.H., “Baumslag-Solitar groups and some other groups of cohomological dimension two”, Comment. Math. Helvetici, 65 (1990), 547–558 | DOI | MR | Zbl

[11] Leemann P.-H., de la Salle M., Cayley graphs with few automorphisms, 5 Dec 2018, arXiv: 1812.02199v1

[12] de la Salle M., Tessera R., “Characterizing a vertex-transitive graph by a large ball”, J. Topology, 12 (2019), 705–743 | DOI | Zbl

[13] Stalder Y., “Convergence of Baumslag-Solitar groups”, Bull. Belg. Math. Soc. Simon Stevin, 13:2 (2006), 221–233 | MR | Zbl