On Limits of Vertex-Symmetric Graphs and Their Automorphisms
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 226-234

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a simple but rather general method of constructing Cayley graphs with trivial vertex stabilizers, we give an example of an infinite locally finite Cayley graph (and, hence, an example of an infinite connected locally finite vertex-symmetric unimodular graph) which is isolated in the space of connected locally finite vertex-symmetric graphs. We also give examples of Cayley graphs which are not isolated in this space but are isolated from the set of connected vertex-symmetric finite graphs.
Keywords: connected locally finite vertex-symmetric graph, Cayley graph, convergence of graphs.
@article{TIMM_2019_25_4_a23,
     author = {V. I. Trofimov},
     title = {On {Limits} of {Vertex-Symmetric} {Graphs} and {Their} {Automorphisms}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--234},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/}
}
TY  - JOUR
AU  - V. I. Trofimov
TI  - On Limits of Vertex-Symmetric Graphs and Their Automorphisms
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 226
EP  - 234
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/
LA  - ru
ID  - TIMM_2019_25_4_a23
ER  - 
%0 Journal Article
%A V. I. Trofimov
%T On Limits of Vertex-Symmetric Graphs and Their Automorphisms
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 226-234
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/
%G ru
%F TIMM_2019_25_4_a23
V. I. Trofimov. On Limits of Vertex-Symmetric Graphs and Their Automorphisms. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 226-234. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a23/