Adaptation to inexactness for some gradient-type optimization methods
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 210-225
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We introduce a notion of inexact model of a convex objective function, which allows for errors both in the function and in its gradient. For this situation, a gradient method with an adaptive adjustment of some parameters of the model is proposed and an estimate for the convergence rate is found. This estimate is optimal on a class of sufficiently smooth problems in the presence of errors. We consider a special class of convex nonsmooth optimization problems. In order to apply the proposed technique to this class, an artificial error should be introduced. We show that the method can be modified for such problems to guarantee a convergence in the function with a nearly optimal rate on the class of convex nonsmooth optimization problems. An adaptive gradient method is proposed for objective functions with some relaxation of the Lipschitz condition for the gradient that satisfy the Polyak–Lojasievicz gradient dominance condition. Here, the objective function and its gradient can be given inexactly. The adaptive choice of the parameters is performed during the operation of the method with respect to both the Lipschitz constant of the gradient and a value corresponding to the error of the gradient and the objective function. The linear convergence of the method is justified up to a value associated with the errors.
Keywords: gradient method, adaptive method, Lipschitz gradient, nonsmooth optimization
Mots-clés : gradient dominance condition.
@article{TIMM_2019_25_4_a22,
     author = {F. S. Stonyakin},
     title = {Adaptation to inexactness for some gradient-type optimization methods},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--225},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a22/}
}
TY  - JOUR
AU  - F. S. Stonyakin
TI  - Adaptation to inexactness for some gradient-type optimization methods
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 210
EP  - 225
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a22/
LA  - ru
ID  - TIMM_2019_25_4_a22
ER  - 
%0 Journal Article
%A F. S. Stonyakin
%T Adaptation to inexactness for some gradient-type optimization methods
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 210-225
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a22/
%G ru
%F TIMM_2019_25_4_a22
F. S. Stonyakin. Adaptation to inexactness for some gradient-type optimization methods. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 210-225. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a22/

[1] Necoara I., Nesterov Y. Glineur F., “Linear convergence of first order methods for non-strongly convex optimization”, Math. Program., 175 (2019), 69–107 | DOI | MR | Zbl

[2] Tyurin A. I., Gasnikov A. V., “Bystryi gradientnyi spusk dlya zadach vypukloi minimizatsii s orakulom, vydayuschim $(\delta,L)$-model funktsii v zaproshennoi tochke.”, Zhurn. vychisl. matematiki i mat. fiziki, 59:7 (2019), 1137–1150 | DOI | Zbl

[3] Stonyakin F. S., Dvinskikh D., Dvurechensky P., Kroshnin A., Kuznetsova O., Agafonov A., Gasnikov A., Tyurin A., Uribe C. A., Pasechnyuk D., Artamonov S., “Gradient methods for problems with inexact model of the objective”, Intern. Conf. on Mathematical optimization theory and operations research (MOTOR 2019), extended conference abstracts, Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, Cham, 2019, 97–114 | DOI

[4] Lu H., Freund R. M., Nesterov Y., “Relatively smooth convex optimization by Firstorder methods, and applications”, SIAM J. Optim., 28:1 (2018), 333–354 | DOI | MR | Zbl

[5] Devolder O., Glineur F., Nesterov Yu., “First-order methods of smooth convex optimization with inexact oracle”, Math. Program., 146:1–2 (2014), 37–75 | DOI | MR | Zbl

[6] Devolder O., Exactness, inexactness and stochasticity in first-order methods for large-scale convex optimization, PhD thesis, 2013, 320 pp.

[7] Nesterov Yu., “Gradient methods for minimizing composite functions”, Math. Program., 140:1 (2013), 125–161 | DOI | MR | Zbl

[8] Nesterov Yu. E., Algoritmicheskaya vypuklaya optimizatsiya, diss$\dots$ d-r fiz.-mat. nauk: 01.01.07, MFTI, M., 2013, 367 pp.

[9] Karimi H., Nutini J., Schmidt M., “Linear sonvergence of pradient and zroximal-gradient methods under the Polyak-Lojasiewicz condition”, Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, 9851, eds. B. Berendt etc., Springer, Cham, 2016, 795–811 | DOI

[10] Mordukhovich B., Variational analysis and generalized differentiation I, theory and examples, Part of the Grundlehren der mathematischen Wissenschaften book series, 330, Springer-Verlag, Berlin; Heidelberg, 2006, 579 pp. | DOI | MR

[11] Polyak B. T., “Gradientnye metody minimizatsii funktsionalov”, Zhurn. vychisl. matematiki i mat. fiziki, 3:4 (1963), 643–653 | DOI | Zbl

[12] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[13] Stonyakin F. S., “Analog kvadratichnoi interpolyatsii dlya spetsialnogo klassa negladkikh funktsionalov i odno ego prilozhenie k adaptivnomu metodu zerkalnogo spuska”, Dinamicheskie sistemy, 9 (37):1 (2019), 3–16 | MR

[14] Mordukhovich B. S., Nam N. M., “Applications of variational analysis to a generalized Fermat-Torricelli problem”, J. Optim. Theory Appl., 148:3 (2011), 431–454 | DOI | MR | Zbl

[15] Nemirovskii A. S., Yudin D. B., Slozhnost zadach i effektivnost metodov optimizatsii, Nauka. Gl. redaktsiya fiz.-mat. literatury, M., 1979, 384 pp.

[16] Nesterov Yu., “Universal gradient methods for convex optimization problems”, Math. Program. Ser. A, 152:1–2 (2015), 381–404 | DOI | MR | Zbl

[17] D'Aspremont A., “Smooth optimization with approximate gradient”, SIAM J. Optimi., 19:3 (2008), 1171–1183 | DOI | MR | Zbl