On Periodic Groups with a Regular Automorphism of Order 4
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 201-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study periodic groups of the form $G=F\leftthreetimes\langle a\rangle$ with the conditions $C_F(a)=1$ and $|a|=4$. The mapping $a:\,F\to F$ defined by the rule $t\to t^a=a^{-1}ta$ is a fixed-point-free (regular) automorphism of the group $F$. In this case, a finite group $F$ is solvable and its commutator subgroup is nilpotent (Gorenstein and Herstein, 1961), and a locally finite group $F$ is solvable and its second commutator subgroup is contained in the center $Z(F)$ (Kovács, 1961). It is unknown whether a periodic group $F$ is always locally finite (Shumyatsky's Question 12.100 from {The Kourovka Notebook} ). We establish the following properties of groups. For $\pi=\pi(F)\setminus\pi(C_F(a^2))$, the group $F$ is $\pi$-closed and the subgroup $O_\pi(F)$ is abelian and is contained in $Z([a^2,F])$ (Theorem 1). A group $F$ without infinite elementary abelian $a^2$‐admissible subgroups is locally finite (Theorem 2). In a nonlocally finite group $F$, there is a nonlocally finite $a$-admissible subgroup factorizable by two locally finite $a$-admissible subgroups (Theorem 3). For any positive integer $n$ divisible by an odd prime, we give examples of nonlocally finite periodic groups with a regular automorphism of order $n$.
Keywords: periodic group, regular (fixed-point-free) automorphism, solvability, local finiteness, nilpotency.
@article{TIMM_2019_25_4_a21,
     author = {A. I. Sozutov},
     title = {On {Periodic} {Groups} with a {Regular} {Automorphism} of {Order~4}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--209},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On Periodic Groups with a Regular Automorphism of Order 4
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 201
EP  - 209
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/
LA  - ru
ID  - TIMM_2019_25_4_a21
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On Periodic Groups with a Regular Automorphism of Order 4
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 201-209
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/
%G ru
%F TIMM_2019_25_4_a21
A. I. Sozutov. On Periodic Groups with a Regular Automorphism of Order 4. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 201-209. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/

[1] Gorenstein D., Konechnye prostye gruppy, Mir, Moskva, 1985, 352 pp.

[2] Gorenstein D., Herstein I.N., “Finite groups admitting a fixed-point-free automorphism of order 4”, Am. J. Math., 83:1 (1961), 71–78 | DOI | MR | Zbl

[3] Kovacs L.G., “Groups with regular automorphisms of order four”, Math Z., 75:1, 277–294 | DOI | MR | Zbl

[4] Burnside W., Theory of groups of finite order, 1st ed., University Press, Cambridge, 1897, 387 pp. | MR | Zbl

[5] Nagata M., “Note on groups with involutions”, Proc. Japan Acad., 28:10 (1952), 564–566 | DOI | MR | Zbl

[6] Neumann B.H., “On the commutativity of addition”, J. London Math. Soc., 15:3 (1940), 203–208 | DOI | MR

[7] Burnside W., Theory of groups of finite order, 2nd ed., University Press, Cambridge, 1911, 512 pp. | MR | Zbl

[8] Neumann B.H., “Groups with automorphisms that leave only the neutral element fixed”, Arch. Math., 7:1 (1956), 1–5 | DOI | MR | Zbl

[9] Zhurtov A. Kh., “O regulyarnykh avtomorfizmakh poryadka 3 i parakh Frobeniusa”, Sib. mat. zhurn., 52:2 (2000), 329–338 | MR

[10] Unsolved problems in group theory. The Kourovka Notebook, June 2015, eds. E.I. Khukhro, V.D. Mazurov, 227 pp., arXiv: 1401.0300v6 | MR

[11] Fischer B., “Finite groups admitting a fixed-point-free automorphism of order 2p (I)”, J. Algebra, 3:1 (1966), 99–114 | DOI | MR | Zbl

[12] Fischer B., “Finite groups admitting a fixed-point-free automorphism of order 2p (II)”, J. Algebra, 5:1 (1967), 25–40 | DOI | MR | Zbl

[13] Shunkov V.P., “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–494

[14] Kondratev A.S., Gruppy i algebry Li, Izd-vo UrO RAN, Ekaterinburg, 2009, 310 pp.

[15] Sozutov A.I., Suchkov N.M., Suchkova N.G., Beskonechnye gruppy s involyutsiyami, Izd-vo Sib. federal. un-ta, Krasnoyarsk, 2011, 149 pp.

[16] Shunkov V.P., “O beskonechnykh tsentralizatorakh v gruppakh”, Algebra i logika, 13:2 (1974), 224–226 | Zbl

[17] Adyan S.I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, Moskva, 1975, 335 pp.

[18] Neiman Kh., Mnogoobraziya grupp, Mir, Moskva, 1969, 264 pp.

[19] Kholl M., Teoriya grupp, IL, Moskva, 1962, 468 pp.

[20] Kargapolov M.I., Merzlyakov Yu.I., Osnovy teorii grupp, Nauka, Moskva, 1977, 240 pp. | MR

[21] Blackburn N., “Some remarks on Cernikov p-groups”, Illinois J. Math., 6:3 (1962), 421–431 | DOI | MR