On Periodic Groups with a Regular Automorphism of Order~4
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 201-209

Voir la notice de l'article provenant de la source Math-Net.Ru

We study periodic groups of the form $G=F\leftthreetimes\langle a\rangle$ with the conditions $C_F(a)=1$ and $|a|=4$. The mapping $a:\,F\to F$ defined by the rule $t\to t^a=a^{-1}ta$ is a fixed-point-free (regular) automorphism of the group $F$. In this case, a finite group $F$ is solvable and its commutator subgroup is nilpotent (Gorenstein and Herstein, 1961), and a locally finite group $F$ is solvable and its second commutator subgroup is contained in the center $Z(F)$ (Kovács, 1961). It is unknown whether a periodic group $F$ is always locally finite (Shumyatsky's Question 12.100 from {The Kourovka Notebook} ). We establish the following properties of groups. For $\pi=\pi(F)\setminus\pi(C_F(a^2))$, the group $F$ is $\pi$-closed and the subgroup $O_\pi(F)$ is abelian and is contained in $Z([a^2,F])$ (Theorem 1). A group $F$ without infinite elementary abelian $a^2$‑admissible subgroups is locally finite (Theorem 2). In a nonlocally finite group $F$, there is a nonlocally finite $a$-admissible subgroup factorizable by two locally finite $a$-admissible subgroups (Theorem 3). For any positive integer $n$ divisible by an odd prime, we give examples of nonlocally finite periodic groups with a regular automorphism of order $n$.
Keywords: periodic group, regular (fixed-point-free) automorphism, solvability, local finiteness, nilpotency.
@article{TIMM_2019_25_4_a21,
     author = {A. I. Sozutov},
     title = {On {Periodic} {Groups} with a {Regular} {Automorphism} of {Order~4}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--209},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/}
}
TY  - JOUR
AU  - A. I. Sozutov
TI  - On Periodic Groups with a Regular Automorphism of Order~4
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 201
EP  - 209
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/
LA  - ru
ID  - TIMM_2019_25_4_a21
ER  - 
%0 Journal Article
%A A. I. Sozutov
%T On Periodic Groups with a Regular Automorphism of Order~4
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 201-209
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/
%G ru
%F TIMM_2019_25_4_a21
A. I. Sozutov. On Periodic Groups with a Regular Automorphism of Order~4. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 201-209. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a21/