On the application of the quasisolution method to the correction of improper convex programs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 189-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a class of improper convex programs with a possibly inconsistent system of constraints, which is important from the viewpoint of applications. Such problems are characterized as improper problems of convex optimization. Since improper problems are rather frequent, it is important to develop the theory and numerical methods of their correction (approximation). The correction is understood as the construction of solvable models that are close to the original problems in a certain sense. Solutions of these models are taken as generalized solutions of the original improper problems. In the present paper the correcting problems are constructed based on the minimization of a certain penalty function depending on the constraints. Since the information about the functions of the original model may be inexact, we apply for the corrected problem the quasisolution method, which is a standard regularization method for ill-posed optimization problems. Convergence conditions are formulated for the proposed methods and convergence rates are established.
Keywords: convex programming, improper problem, penalty function methods, quasisolution method.
Mots-clés : optimal correction
@article{TIMM_2019_25_4_a20,
     author = {V. D. Skarin},
     title = {On the application of the quasisolution method to the correction of improper convex programs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {189--200},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/}
}
TY  - JOUR
AU  - V. D. Skarin
TI  - On the application of the quasisolution method to the correction of improper convex programs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 189
EP  - 200
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/
LA  - ru
ID  - TIMM_2019_25_4_a20
ER  - 
%0 Journal Article
%A V. D. Skarin
%T On the application of the quasisolution method to the correction of improper convex programs
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 189-200
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/
%G ru
%F TIMM_2019_25_4_a20
V. D. Skarin. On the application of the quasisolution method to the correction of improper convex programs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 189-200. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/

[1] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.

[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.

[3] Vasilev F. P., Metody optimizatsii, kn. 1, 2, MTsNMO, M., 2011, 1056 pp.

[4] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp.

[5] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods in nonlinear ill-posed problems, W. de Gruyter, Berlin; N Y, 2008, 194 pp. | MR

[6] Golub G. N., Hansen P. C., O'Leary D. P., “Tikhonov regularization and total least squares”, SIAM J. Matrix Anal. Appl., 21:1 (1999), 185–194 | DOI | MR | Zbl

[7] Renaut R. A., Guo N., “Efficient algorithms for solution of regularized total least squares”, SIAM J. Matrix Anal. Appl., 26:2 (2005), 457–476 | DOI | MR | Zbl

[8] Skarin V. D., “On the parameter control of the residual method for the correction of improper problems of convex programming”, Discrete Optimization and Operations Research, 9 th Intern. Conf. (DOOR 2016) (Vladivostok, 2016), Lecture Notes in Computer Science, 9869, 441–451 | DOI | MR | Zbl

[9] Skarin V. D., “Correction of improper convex programming problems using regularization”, Optimization and Applications, 8 th Intern. Conf. OPTIMA-2017, Book abstr. (Petrovac, Montenegro, Sept. 2017), Moscow, 2017, 132