Mots-clés : optimal correction
@article{TIMM_2019_25_4_a20,
author = {V. D. Skarin},
title = {On the application of the quasisolution method to the correction of improper convex programs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {189--200},
year = {2019},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/}
}
TY - JOUR AU - V. D. Skarin TI - On the application of the quasisolution method to the correction of improper convex programs JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 189 EP - 200 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/ LA - ru ID - TIMM_2019_25_4_a20 ER -
V. D. Skarin. On the application of the quasisolution method to the correction of improper convex programs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 189-200. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a20/
[1] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp.
[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp.
[3] Vasilev F. P., Metody optimizatsii, kn. 1, 2, MTsNMO, M., 2011, 1056 pp.
[4] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp.
[5] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods in nonlinear ill-posed problems, W. de Gruyter, Berlin; N Y, 2008, 194 pp. | MR
[6] Golub G. N., Hansen P. C., O'Leary D. P., “Tikhonov regularization and total least squares”, SIAM J. Matrix Anal. Appl., 21:1 (1999), 185–194 | DOI | MR | Zbl
[7] Renaut R. A., Guo N., “Efficient algorithms for solution of regularized total least squares”, SIAM J. Matrix Anal. Appl., 26:2 (2005), 457–476 | DOI | MR | Zbl
[8] Skarin V. D., “On the parameter control of the residual method for the correction of improper problems of convex programming”, Discrete Optimization and Operations Research, 9 th Intern. Conf. (DOOR 2016) (Vladivostok, 2016), Lecture Notes in Computer Science, 9869, 441–451 | DOI | MR | Zbl
[9] Skarin V. D., “Correction of improper convex programming problems using regularization”, Optimization and Applications, 8 th Intern. Conf. OPTIMA-2017, Book abstr. (Petrovac, Montenegro, Sept. 2017), Moscow, 2017, 132