Mots-clés : Baire classes.
@article{TIMM_2019_25_4_a2,
author = {E. A. Barabanov and V. V. Bykov},
title = {Description of the linear {Perron} effect under parametric perturbations exponentially vanishing at infinity},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {31--43},
year = {2019},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a2/}
}
TY - JOUR AU - E. A. Barabanov AU - V. V. Bykov TI - Description of the linear Perron effect under parametric perturbations exponentially vanishing at infinity JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 31 EP - 43 VL - 25 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a2/ LA - ru ID - TIMM_2019_25_4_a2 ER -
%0 Journal Article %A E. A. Barabanov %A V. V. Bykov %T Description of the linear Perron effect under parametric perturbations exponentially vanishing at infinity %J Trudy Instituta matematiki i mehaniki %D 2019 %P 31-43 %V 25 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a2/ %G ru %F TIMM_2019_25_4_a2
E. A. Barabanov; V. V. Bykov. Description of the linear Perron effect under parametric perturbations exponentially vanishing at infinity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 31-43. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a2/
[1] Lyapunov A.M., Sobranie sochinenii, v 6 t., v. 2, Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo AN SSSR, M.; L., 1956, 476 pp. | MR
[2] Demidovich B.P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp.
[3] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Math. Zeitschr., 31:4 (1930), 748–766 | DOI | MR | Zbl
[4] Perron O., “Die Stabilitatsfrage bei Differentialgleichungen”, Math. Zeitschr., 32:5 (1930), 703–728 | DOI | MR | Zbl
[5] Leonov G.A., Khaoticheskaya dinamika i klassicheskaya teoriya ustoichivosti dvizheniya, RKhD, M.; Izhevsk, 2006, 168 pp.
[6] Korovin S.K., Izobov N.A., “Realizatsiya effekta Perrona smeny znachenii kharakteristicheskikh pokazatelei reshenii differentsialnykh sistem”, Differents. uravneniya, 46:11 (2010), 1536–1550 | MR | Zbl
[7] Barabanov E.A., Bykov V.V., Karpuk M.V., “Polnoe opisanie spektrov pokazatelei Lyapunova lineinykh differentsialnykh sistem, nepreryvno zavisyaschikh ot parametra ravnomerno na vremennoi poluosi”, Differents. uravneniya, 54:12 (2018), 1579–1588 | DOI | Zbl
[8] Millionschikov V.M., “Berovskie klassy funktsii i pokazateli Lyapunova. I”, Differents. uravneniya, 16:8 (1980), 1408–1416 | MR
[9] Ber R., Teoriya razryvnykh funktsii, GTTI, M.; L., 1932, 134 s pp.
[10] Khausdorf F., Teoriya mnozhestv, ONTI, M.; L., 1937, 306 pp.
[11] E. A. Barabanov, V. V. Bykov, “Opisanie lineinogo effekta Perrona pri parametricheskikh vozmuscheniyakh, ubyvayuschikh k nulyu na beskonechnosti”, Ustoichivost, upravlenie, differentsialnye igry (SCDG2019), materialy Mezhdunar. konf., posvyaschennoi 95-letiyu so dnya rozhdeniya akademika N.N. Krasovskogo, IMM UrO RAN, Ekaterinburg, 2019, 48–53
[12] Millionschikov V.M., “Pokazateli Lyapunova kak funktsii parametra”, Mat. sb., 137:3 (1988), 364–380
[13] Bykov V.V., “Funktsii, opredelyaemye pokazatelyami Lyapunova semeistv lineinykh differentsialnykh sistem, nepreryvno zavisyaschikh ot parametra ravnomerno na poluosi”, Differents. uravneniya, 53:12 (2017), 1579–1592 | DOI | Zbl
[14] Stepanoff W., “Sur les suites des fonctions continues”, Fund. Math., 11 (1928), 264–274 | DOI | Zbl
[15] Karpuk M.V., “Pokazateli Lyapunova semeistv morfizmov metrizovannykh vektornykh rassloenii kak funktsii na baze rassloeniya”, Differents. uravneniya, 50:10 (2014), 1332–1338 | DOI | MR | Zbl
[16] Izobov N.A., Vvedenie v teoriyu pokazatelei Lyapunova, Izd-vo BGU, Minsk, 2006, 319 pp.
[17] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966, 576 pp.