On the Hewitt realcompactification and $\tau$-placedness of function spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 177-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the relation between extensions of the Hewitt realcompactification type and spaces of strictly $\tau$-$F$-functions. A criterion is obtained for the realcompleteness of the space of Baire functions of class $\alpha$. It is proved that the space $B(X,G)$ of Baire functions from a $G$-$z$-normal space $X$ to a noncompact metrizable separable space $G$ is Lindel$\ddot{\mathrm o}$f if and only if $X$ is countable.
Keywords: realcomplete spaces, weak functional tightness, Baire function, $\tau$-placedness, Hewitt realcompactification.
@article{TIMM_2019_25_4_a18,
     author = {A. V. Osipov},
     title = {On the {Hewitt} realcompactification and $\tau$-placedness of function spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {177--183},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - On the Hewitt realcompactification and $\tau$-placedness of function spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 177
EP  - 183
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/
LA  - ru
ID  - TIMM_2019_25_4_a18
ER  - 
%0 Journal Article
%A A. V. Osipov
%T On the Hewitt realcompactification and $\tau$-placedness of function spaces
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 177-183
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/
%G ru
%F TIMM_2019_25_4_a18
A. V. Osipov. On the Hewitt realcompactification and $\tau$-placedness of function spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 177-183. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/

[1] Hewitt E., “Rings of real-valued continuous functions, I”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | DOI | MR | Zbl

[2] Arkhangelskii A.V., Ponomarev V.I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974, 424 pp.

[3] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[4] Nachbin L., “Topological vector spaces of continuous functions”, Proc. Nat. Acad. Sci. (USA), 40:6 (1954), 471–474 | DOI | MR | Zbl

[5] Arkhangelskii A.V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989, 222 pp.

[6] Arkhangelskii A.V., “Stroenie i klassifikatsiya topologicheskikh prostranstv i kardinalnye invarianty”, Uspekhi mat. nauk, 33:6 (204) (1978), 29–84 | MR

[7] Arhangel'skii A.V., “Functional tightness, $q$-spaces and $\tau$-embeddings”, Comment. Math. Univ. Carol., 24:1 (1983), 105–120 | MR

[8] Okunev O.G., “O prostranstvakh funktsii v topologii potochechnoi skhodimosti: rasshirenie Khyuitta i $tau$-nepreryvnye funktsii”, Vestn. Mosk. un-ta. Ser 1. Matematika. Mekhanika, 1985, no. 4, 78–80 | Zbl

[9] Kuratovskii K., Topologiya, v 2-kh tomakh, v. 1, Mir, M., 1966, 591 pp. | MR

[10] Arhangel'skii A., Tkachenko M., Topological group and related structure, Atlantis Studies Math., 1, Atlantis Press, Paris; World Sci. Publ. Co. Pte. Ltd, Hackensack, NJ, 2008, 781 pp. | DOI | MR

[11] Stone A.H., “Paracompactness and product spaces”, Bull. Amer. Math. Soc., 54 (1948), 977–982 | DOI | MR | Zbl

[12] Pestryakov A.V., Berovskie funktsii i prostranstva berovskikh funktsii, dis ... kand. fiz.-mat. nauk, Sverdlovsk, 1987, 74 pp. | Zbl