On the Hewitt realcompactification and $\tau$-placedness of function spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 177-183

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relation between extensions of the Hewitt realcompactification type and spaces of strictly $\tau$-$F$-functions. A criterion is obtained for the realcompleteness of the space of Baire functions of class $\alpha$. It is proved that the space $B(X,G)$ of Baire functions from a $G$-$z$-normal space $X$ to a noncompact metrizable separable space $G$ is Lindel$\ddot{\mathrm o}$f if and only if $X$ is countable.
Keywords: realcomplete spaces, weak functional tightness, Baire function, $\tau$-placedness, Hewitt realcompactification.
@article{TIMM_2019_25_4_a18,
     author = {A. V. Osipov},
     title = {On the {Hewitt} realcompactification and $\tau$-placedness of function spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {177--183},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - On the Hewitt realcompactification and $\tau$-placedness of function spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 177
EP  - 183
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/
LA  - ru
ID  - TIMM_2019_25_4_a18
ER  - 
%0 Journal Article
%A A. V. Osipov
%T On the Hewitt realcompactification and $\tau$-placedness of function spaces
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 177-183
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/
%G ru
%F TIMM_2019_25_4_a18
A. V. Osipov. On the Hewitt realcompactification and $\tau$-placedness of function spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 177-183. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/