On the Hewitt realcompactification and $\tau$-placedness of function spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 177-183
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the relation between extensions of the Hewitt realcompactification type and spaces of strictly $\tau$-$F$-functions. A criterion is obtained for the realcompleteness of the space of Baire functions of class $\alpha$. It is proved that the space $B(X,G)$ of Baire functions from a $G$-$z$-normal space $X$ to a noncompact metrizable separable space $G$ is Lindel$\ddot{\mathrm o}$f if and only if $X$ is countable.
Keywords:
realcomplete spaces, weak functional tightness, Baire function, $\tau$-placedness, Hewitt realcompactification.
@article{TIMM_2019_25_4_a18,
author = {A. V. Osipov},
title = {On the {Hewitt} realcompactification and $\tau$-placedness of function spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {177--183},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/}
}
TY - JOUR AU - A. V. Osipov TI - On the Hewitt realcompactification and $\tau$-placedness of function spaces JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 177 EP - 183 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/ LA - ru ID - TIMM_2019_25_4_a18 ER -
A. V. Osipov. On the Hewitt realcompactification and $\tau$-placedness of function spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 177-183. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a18/