On multiplicative inversion for Wolff-Denjoy series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 147-154
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a function $f$ with real poles that form a monotone bounded sequence be expanded in a Wolff–Denjoy series with positive coefficients. The main result of the paper states that, if we subtract the “linear part” from the function $1/f$, then the remaining “fractional part” is also expanded in a Wolff–Denjoy series (its poles are also real and the coefficients of the series are negative). An application of the result to operator theory is given.
Keywords:
Wolff–Denjoy series, closed operator, left inverse operator, functional calculus.
@article{TIMM_2019_25_4_a15,
author = {A. R. Mirotin and A. A. Atvinovskii},
title = {On multiplicative inversion for {Wolff-Denjoy} series},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {147--154},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/}
}
TY - JOUR AU - A. R. Mirotin AU - A. A. Atvinovskii TI - On multiplicative inversion for Wolff-Denjoy series JO - Trudy Instituta matematiki i mehaniki PY - 2019 SP - 147 EP - 154 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/ LA - ru ID - TIMM_2019_25_4_a15 ER -
A. R. Mirotin; A. A. Atvinovskii. On multiplicative inversion for Wolff-Denjoy series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 147-154. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/