On multiplicative inversion for Wolff-Denjoy series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 147-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a function $f$ with real poles that form a monotone bounded sequence be expanded in a Wolff–Denjoy series with positive coefficients. The main result of the paper states that, if we subtract the “linear part” from the function $1/f$, then the remaining “fractional part” is also expanded in a Wolff–Denjoy series (its poles are also real and the coefficients of the series are negative). An application of the result to operator theory is given.
Keywords: Wolff–Denjoy series, closed operator, left inverse operator, functional calculus.
@article{TIMM_2019_25_4_a15,
     author = {A. R. Mirotin and A. A. Atvinovskii},
     title = {On multiplicative inversion for {Wolff-Denjoy} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {147--154},
     year = {2019},
     volume = {25},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - A. A. Atvinovskii
TI  - On multiplicative inversion for Wolff-Denjoy series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2019
SP  - 147
EP  - 154
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/
LA  - ru
ID  - TIMM_2019_25_4_a15
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A A. A. Atvinovskii
%T On multiplicative inversion for Wolff-Denjoy series
%J Trudy Instituta matematiki i mehaniki
%D 2019
%P 147-154
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/
%G ru
%F TIMM_2019_25_4_a15
A. R. Mirotin; A. A. Atvinovskii. On multiplicative inversion for Wolff-Denjoy series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 25 (2019) no. 4, pp. 147-154. http://geodesic.mathdoc.fr/item/TIMM_2019_25_4_a15/

[1] Sibilev R.V., “Teorema edinstvennosti dlya ryadov Volfa - Danzhua”, Algebra i analiz, 7:1 (1995), 170–199 | MR | Zbl

[2] Leonteva T.A., “Predstavlenie analiticheskikh funktsii ryadami ratsionalnykh funktsii”, Mat. zametki, 2:4 (1967), 347–355

[3] Leonteva T.A., “Predstavlenie funktsii, analiticheskikh v zamknutoi oblasti ryadami ratsionalnykh funktsii”, Mat. zametki, 4:2 (1968), 191–200 | MR | Zbl

[4] Sherstyukov V.B., “Razlozhenie obratnoi velichiny tseloi funktsii s nulyami v polose v ryad Kreina”, Mat. sb., 202:12 (2011), 137–156 | DOI | Zbl

[5] Akhiezer N.I., “O nekotorykh formulakh obrascheniya singulyarnykh integralov”, Izv. AN SSSR. Ser. matematicheskaya, 19 (1945), 275 –290 | MR

[6] Nevanlinna R., “Asymptotische Entwicklungen Beschrankter Funktionen und das Stieltjessche Momentenproblem”, Ann. Acad. Sci. Fenn. Ser. A, 18 (1922), 1–53 | MR

[7] Donoghue W.F., Distributions and Fourier transforms, Ser. Pure Appl. Math., 32, Acad. Press, N Y; London, 1969, 315 pp. | MR | Zbl

[8] Mirotin A.R., Atvinovskii A.A., Analog for the Wiener lemma for Wolff-Denjoy series, 21 Aug 2019, 8 pp., arXiv: 1908.08029v1

[9] Atvinovskii A.A., “Ob integralnom predstavlenii odnogo klassa analiticheskikh funktsii”, Izv. Gomel. gos. un-ta im. F. Skoriny. Estestvennye nauki, 2011, no. 4 (67), 3–7 | Zbl

[10] Krein M.G., Nudelman, A.A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 551 pp. | MR

[11] Danford N., Shvarts Dzh.T., Lineinye operatory, v. 1, Obschaya teoriya, IL, M., 1962, 896 pp.

[12] Mirotin A.R., Atvinovskii A.A., “Obraschenie lineinoi kombinatsii znachenii rezolventy zamknutogo operatora”, Problemy fiziki, matematiki i tekhniki, 2014, no. 3 (20), 77–79 | Zbl

[13] Atvinovskii A.A., Mirotin A.R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve”, Izv. vuzov. Matematika, 10 (2013), 3–15 | MR | Zbl

[14] Atvinovskii A.A., Mirotin A.R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II”, Izv. vuzov. Matematika, 5 (2015), 3–16 | MR | Zbl

[15] Mirotin A.R., “Obraschenie operatorno-monotonnykh funktsii negativnykh operatorov v banakhovom prostranstve”, Tr. Instituta matematiki (Minsk), 12:1 (2004), 104–108

[16] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp.